【題目】小明鍛煉健身,從A地勻速步行到B地用時25分鐘.若返回時,發(fā)現(xiàn)走一小路可使A、B兩地間路程縮短200米,便抄小路以原速返回,結(jié)果比去時少用2.5分鐘.
(1)求返回時A、B兩地間的路程;
(2)若小明從A地步行到B地后,以跑步形式繼續(xù)前進到C地(整個鍛煉過程不休息).據(jù)測試,在他整個鍛煉過程的前30分鐘(含第30分鐘),步行平均每分鐘消耗熱量6卡路里,跑步平均每分鐘消耗熱量10卡路里;鍛煉超過30分鐘后,每多跑步1分鐘,多跑的總時間內(nèi)平均每分鐘消耗的熱量就增加1卡路里.測試結(jié)果,在整個鍛煉過程中小明共消耗904卡路里熱量.問:小明從A地到C地共鍛煉多少分鐘?
【答案】(1)1800米;(2)52分鐘.
【解析】
試題分析:(1)可設(shè)AB兩地之間的距離為x米,根據(jù)兩種步行方案的速度相等,列出方程即可求解;
(2)可設(shè)從A地到C地一共鍛煉時間為y分鐘,根據(jù)在整個鍛煉過程中小明共消耗904卡路里熱量,列出方程即可求解.
試題解析:(1)設(shè)返回時A,B兩地間的路程為x米,由題意得:
,
解得x=1800.
答:A、B兩地間的路程為1800米;
(2)設(shè)小明從A地到B地共鍛煉了y分鐘,由題意得:
25×6+5×10+[10+(y-30)×1](y-30)=904,
整理得y2-50y-104=0,
解得y1=52,y2=-2(舍去).
答:小明從A地到C地共鍛煉52分鐘.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在矩形ABCD中,M,N分別是邊AD,BC的中點,E,F分別是線段BM,CM的中點.
(1)求證:△ABM≌△DCM;
(2)判斷四邊形MENF是什么特殊四邊形,并證明你的結(jié)論;
(3)當(dāng)AD∶AB=__________時,四邊形MENF是正方形(只寫結(jié)論,不需證明).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD為平行四邊形,延長AD到E,使DE=AD,連接EB,EC,DB.添加一個條件,不能使四邊形DBCE成為矩形的是( )
(A)AB=BE (B)BE⊥DC (C)∠ADB=90° (D)CE⊥DE
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知a,b,c分別是△ABC的三邊長,且滿足a2+b2+c2=ab+bc+ac,則△ABC是( )
A. 等腰三角形B. 等邊三角形
C. 直角三角形D. 等腰直角三角形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的半徑OD⊥弦AB于點C,連結(jié)AO并延長交⊙O于點E,連結(jié)EC.若AB=8,CD=2,則EC的長為( )
A. 2 B. 8 C. 2 D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若等腰三角形的腰長為6,則它的底邊長a的取值范圍是________;若等腰三角形的底邊長為4,則它的腰長b的取值范圍是_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》“勾股”章有一題:“今有戶高多于廣六尺,兩隅相去適一丈,問戶高、廣各幾何?”大意是說:已知矩形門的高比寬多6尺,門的對角線長1丈,那么門的高和寬各是多少?(1丈=10尺),如果設(shè)門的寬為x尺,那么這個門的高為(x+6)尺,根據(jù)題意得方程:_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某賓館擁有客房100間,經(jīng)營中發(fā)現(xiàn):每天入住的客房數(shù)y(間)與房價x(元)(180≤x≤300)滿足一次函數(shù)關(guān)系,部分對應(yīng)值如下表:
x(元) | 180 | 260 | 280 | 300 |
y(間) | 100 | 60 | 50 | 40 |
(1)求y與x之間的函數(shù)表達式;
(2)已知每間入住的客房,賓館每日需支出各種費用100元;每間空置的客房,賓館每日需支出各種費用60元.當(dāng)房價為多少元時,賓館當(dāng)日利潤最大?求出最大利潤.(賓館當(dāng)日利潤=當(dāng)日房費收入-當(dāng)日支出)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com