【題目】如圖,拋物線y=﹣x2+bx+cx軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,且OA2,OC3

1)求拋物線的解析式;

2)點(diǎn)D2,2)是拋物線上一點(diǎn),那么在拋物線的對(duì)稱軸上,是否存在一點(diǎn)P,使得BDP的周長最小,若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

3)連接AD并延長,過拋物線上一點(diǎn)QQ不與A重合)作QNx軸,垂足為N,與射線交于點(diǎn)M,使得QM3MN,若存在,請(qǐng)直接寫出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.

【答案】(1)y=﹣x2+x+3;(2)存在,理由見解析;(3)見解析.

【解析】

1)點(diǎn)A、C的坐標(biāo)分別為:(-2,0)、(0,3),將點(diǎn)A、C的坐標(biāo)代入拋物線表達(dá)式,即可求解;
2)作點(diǎn)D關(guān)于對(duì)稱軸的對(duì)稱軸D′-1,2),連接BD′交拋物線對(duì)稱軸與點(diǎn)P,則點(diǎn)P為所求,即可求解;
3QM=|-m2+m+3-m-1|=|-m2+2|3MN=3m+1),QM=3MN,即|-m2+2|=3m+1),即可求解.

解:(1)點(diǎn)AC的坐標(biāo)分別為:(﹣2,0)、(0,3),

將點(diǎn)A、C的坐標(biāo)代入拋物線表達(dá)式得:,解得:,

故拋物線的表達(dá)式為:y=﹣x2+x+3

2)存在,理由:

作點(diǎn)D關(guān)于對(duì)稱軸的對(duì)稱軸D′(﹣1,2),連接BD′交拋物線對(duì)稱軸與點(diǎn)P,則點(diǎn)P為所求,

將點(diǎn)B、D′的坐標(biāo)代入一次函數(shù)表達(dá)式:ykx+b并解得:

直線BD′的函數(shù)表達(dá)式為:y=﹣x+,

拋物線的對(duì)稱軸為:x,當(dāng)x時(shí),y,

故點(diǎn)P,);

3)設(shè)點(diǎn)Nm,0),則點(diǎn)M、Q的坐標(biāo)分別為:(mm+1)、(m,﹣m2+m+3),

QM|m2+m+3m1||m2+2|

3MN3m+1),

QM3MN,即|m2+2|3m+1),

解得:m=﹣2或﹣15,

故點(diǎn)Q(﹣2,3)或(﹣1,2)或(5,﹣7).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角三角形ABC中,∠C90°,ACBCEAB的中點(diǎn),過點(diǎn)EACBC的垂線,垂足分別為點(diǎn)D和點(diǎn)F,四邊形CDEF沿著CA方向勻速運(yùn)動(dòng),點(diǎn)C與點(diǎn)A重合時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t,運(yùn)動(dòng)過程中四邊形CDEFABC的重疊部分面積為S.則S關(guān)于t的函數(shù)圖象大致為(  )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市計(jì)劃購進(jìn)甲、乙兩種商品,兩種商品的進(jìn)價(jià)、售價(jià)如下表:

商品

進(jìn)價(jià)(元/件)

售價(jià)(元/件)

200

100

若用360元購進(jìn)甲種商品的件數(shù)與用180元購進(jìn)乙種商品的件數(shù)相同.

1)求甲、乙兩種商品的進(jìn)價(jià)是多少元?

2)若超市銷售甲、乙兩種商品共50件,其中銷售甲種商品為件(),設(shè)銷售完50件甲、乙兩種商品的總利潤為元,求之間的函數(shù)關(guān)系式,并求出的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y1=3x5與反比例函數(shù)y2=的圖象相交A2m),Bn,﹣6)兩點(diǎn),連接OA,OB

1)求kn的值;

2)求AOB的面積;

3)直接寫出y1 y2時(shí)自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,連接BD,點(diǎn)E為CB邊的延長線上一點(diǎn),點(diǎn)F是線段AE的中點(diǎn),過點(diǎn)F作AE的垂線交BD于點(diǎn)M,連接ME、MC.

(1)根據(jù)題意補(bǔ)全圖形,猜想的數(shù)量關(guān)系并證明;

(2)連接FB,判斷FB 、FM之間的數(shù)量關(guān)系并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,函數(shù)yxx0)的圖象與反比例函數(shù)y的圖象交于點(diǎn)A,若點(diǎn)A繞點(diǎn)B,0)順時(shí)針旋轉(zhuǎn)90°后,得到的點(diǎn)A'仍在y的圖象上,則點(diǎn)A的坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在ABC中,∠B=90°,點(diǎn)PA點(diǎn)開始沿AB邊向B點(diǎn)以1cm/s的速度移動(dòng),點(diǎn)QB點(diǎn)開始沿BC邊向C點(diǎn)以2cm/s的速度移動(dòng),若點(diǎn)P、Q分別從點(diǎn)A、B同時(shí)出發(fā),問過多少秒后,PBQ的面積分別為8cm210cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,四邊形ABCD是菱形,點(diǎn)A的坐標(biāo)為(0,),分別以A,B為圓心,大于AB的長為半徑作弧,兩弧交于E,F兩點(diǎn),直線EF恰好經(jīng)過點(diǎn)D,交AB于點(diǎn)H,則四邊形HBCD的周長為(  )

A.B.6C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為6的正方形ABCD中,點(diǎn)EAD邊上的一個(gè)動(dòng)點(diǎn)(與點(diǎn)AD不重合),∠EBM=45°BE交對(duì)角線AC于點(diǎn)F,BM交對(duì)角線AC于點(diǎn)G、交CD于點(diǎn)M

1)如圖1,聯(lián)結(jié)BD,求證:,并寫出的值;

2)聯(lián)結(jié)EG,如圖2,若設(shè),求y關(guān)于的函數(shù)解析式,并寫出函數(shù)的定義域;

3)當(dāng)M為邊DC的三等分點(diǎn)時(shí),求的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案