【題目】在平面直角坐標(biāo)系xOy中,已知點(diǎn)O(0,0),A(3,0),點(diǎn)B在y軸正半軸上,且△OAB的面積為6,求點(diǎn)B的坐標(biāo)及直線AB對(duì)應(yīng)的函數(shù)關(guān)系式.
【答案】y=﹣x+4,
【解析】
由于點(diǎn)B在y軸正半軸上,則B點(diǎn)的橫坐標(biāo)為0,只需求出B點(diǎn)的縱坐標(biāo)即可.由△AOB的面積及OA的長(zhǎng),易求得B點(diǎn)縱坐標(biāo)的絕對(duì)值,由此可得出B點(diǎn)的坐標(biāo)
解:設(shè)點(diǎn)B的坐標(biāo)為(0,b).
∵點(diǎn)O(0,0),A(3,0),
∴OA=3,
∵點(diǎn)B在y軸上,
∴△OAB是直角三角形,
由題意得:S△OAB=×3×b=6,
∴b=4,
即點(diǎn)B的坐標(biāo)為(0,4),
設(shè)直線AB的解析式為y=kx+4,
把A(3,0)代入得:0=3k+4,
解得,k=﹣,
∴直線AB的解析式為y=﹣x+4,
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知含字母x,y的多項(xiàng)式是:3[x2+2(y2+xy﹣2)]﹣3(x2+2y2)﹣4(xy﹣x﹣1)
(1)化簡(jiǎn)此多項(xiàng)式;
(2)小紅取x,y互為倒數(shù)的一對(duì)數(shù)值代入化簡(jiǎn)的多項(xiàng)式中,恰好計(jì)算得多項(xiàng)式的值等于0,那么小紅所取的字母y的值等于多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列計(jì)算正確的是( 。
A.2m3+3m2=5m5
B.﹣5(﹣x3)﹣2=﹣
C.(3a3b3)2=6a6b6
D.
=﹣2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AD是△ABC的角平分線,DF⊥AB,垂足為F,DE=DG,△ADG和△AED的面積分別為25和17,則△EDF的面積為( )
A. 4 B. 5 C. 5.5 D. 6
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,AD是高,E、F分別是AB、AC的中點(diǎn),
(1)AB=10,AC=8,求四邊形AEDF的周長(zhǎng);
(2)EF與AD有怎樣的位置關(guān)系,證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)軸上有A、B兩點(diǎn),A在B的左側(cè),已知點(diǎn)B對(duì)應(yīng)的數(shù)為2,點(diǎn)A對(duì)應(yīng)的數(shù)為a.
(1)若a=﹣3,則線段AB的長(zhǎng)為 (直接寫(xiě)出結(jié)果);
(2)若點(diǎn)C在線段AB之間,且AC﹣BC=2,求點(diǎn)C表示的數(shù)(用含a的式子表示);
(3)在(2)的條件下,點(diǎn)D是數(shù)軸上A點(diǎn)左側(cè)一點(diǎn),當(dāng)AC=2AD,BD=4BC,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(12分)(1)如圖1,在平面直角坐標(biāo)系中,四邊形OBCD是正方形,且D(0,2),點(diǎn)E是線段OB延長(zhǎng)線上一點(diǎn),M是線段OB上一動(dòng)點(diǎn)(不包括點(diǎn)O、B),作MN⊥DM,垂足為M,且MN=DM.設(shè)OM=a,請(qǐng)你利用基本活動(dòng)經(jīng)驗(yàn)直接寫(xiě)出點(diǎn)N的坐標(biāo)_____(用含a的代數(shù)式表示);
(2)如果(1)的條件去掉“且MN=DM”,加上“交∠CBE的平分線與點(diǎn)N”,如圖2,求證:MD=MN.如何突破這種定勢(shì),獲得問(wèn)題的解決,請(qǐng)你寫(xiě)出你的證明過(guò)程.
(3)如圖3,請(qǐng)你繼續(xù)探索:連接DN交BC于點(diǎn)F,連接FM,下列兩個(gè)結(jié)論:①FM的長(zhǎng)度不變;②MN平分∠FMB,請(qǐng)你指出正確的結(jié)論,并給出證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)軸上線段的長(zhǎng)度可以用線段端點(diǎn)表示的數(shù)進(jìn)行減法運(yùn)算得到,例如:如圖①,若點(diǎn)A,B在數(shù)軸上分別對(duì)應(yīng)的數(shù)為a,b(a<b),則AB的長(zhǎng)度可以表示為AB=b-a.
請(qǐng)你用以上知識(shí)解決問(wèn)題:
如圖②,一個(gè)點(diǎn)從數(shù)軸上的原點(diǎn)開(kāi)始,先向左移動(dòng)2個(gè)單位長(zhǎng)度到達(dá)A點(diǎn),再向右移動(dòng)3個(gè)單位長(zhǎng)度到達(dá)B點(diǎn),然后向右移動(dòng)5個(gè)單位長(zhǎng)度到達(dá)C點(diǎn).
(1)請(qǐng)你在圖②的數(shù)軸上表示出A,B,C三點(diǎn)的位置.
(2)若點(diǎn)A以每秒1個(gè)單位長(zhǎng)度的速度向左移動(dòng),同時(shí),點(diǎn)B和點(diǎn)C分別以每秒2個(gè)單位長(zhǎng)度和3個(gè)單位長(zhǎng)度的速度向右移動(dòng),設(shè)移動(dòng)時(shí)間為t秒.
①當(dāng)t=2時(shí),求AB和AC的長(zhǎng)度;
②試探究:在移動(dòng)過(guò)程中,3AC-4AB的值是否隨著時(shí)間t的變化而改變?若變化,請(qǐng)說(shuō)明理由;若不變,請(qǐng)求其值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com