14.已知二次函數(shù)y=-x2-2x+3.
(1)求拋物線頂點(diǎn)M的坐標(biāo);
(2)設(shè)拋物線與x軸交于A,B兩點(diǎn),與y軸交于C點(diǎn),求A,B,C的坐標(biāo)(點(diǎn)A在點(diǎn)B的左側(cè)),并畫(huà)出函數(shù)圖象的大致示意圖;
(3)根據(jù)圖象,寫(xiě)出不等式=-x2-2x+3>0的解集.

分析 (1)利用配方法即可解決問(wèn)題.
(2)對(duì)于拋物線的解析式,分別令x=0,y=0,解方程即可解決問(wèn)題.
(3)利用拋物線的圖象寫(xiě)出在x軸上方部分的x取值范圍.

解答 解:(1)∵y=-x2-2x+3=-(x+1)2+4,
∴頂點(diǎn)M的坐標(biāo)為(-1,4).

(2)對(duì)于拋物線y=-x2-2x+3,
令x=0,得y=3,令y=0,得-x2-2x+3=0,解得x=-3或1,
所以A(-3,0)B(1,0)C(0,3)

(3)由圖象可知,-3<x<1時(shí),y>0.

點(diǎn)評(píng) 本題考查二次函數(shù)與x軸的交點(diǎn)、二次函數(shù)與不等式等知識(shí),解題的關(guān)鍵是熟練掌握求拋物線與坐標(biāo)軸的交點(diǎn)坐標(biāo),學(xué)會(huì)利用函數(shù)圖象,確定坐標(biāo)自變量的取值范圍,屬于中考?碱}型.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

4.如圖,在△ABC中,∠BAC的平分線與BC邊的垂直平分線相交于點(diǎn)P,過(guò)點(diǎn)P作AB、AC(或延長(zhǎng)線)的垂線,垂足分別是M、N,求證:BM=CN.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

5.(x-$\frac{x}{x+1}$)•$\frac{x+1}{{x}^{2}+4x+4}$÷$\frac{{x}^{2}-2x}{{x}^{2}-4}$,其中x=-$\frac{1}{2}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

2.計(jì)算與化簡(jiǎn):
(1)($\frac{2}{3}$-$\frac{1}{12}$-$\frac{1}{15}$)×(-60)
(2)-32-$\frac{1}{2}$×[5-(-3)2]
(3)3(2a-4b)-2(3a+b)
(4)3x2+[2x-(-5x2+2x)-2]-1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

9.探索規(guī)律,觀察如圖,回答問(wèn)題:

(1)第五個(gè)圖形有15個(gè)點(diǎn)
(2)第n個(gè)圖形,有$\frac{1}{2}$n(n+1)個(gè)點(diǎn);
(3)當(dāng)點(diǎn)數(shù)為210時(shí),n為多少.D
A.第17個(gè)     B.第18個(gè)       C.第19個(gè)        D.第20個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

19.如圖,一農(nóng)戶要建一個(gè)矩形雞舍,為了節(jié)省材料雞舍的一邊利用長(zhǎng)為12米的墻,另外三邊用長(zhǎng)為25米的建筑材料圍成,為方便進(jìn)出,在垂直墻的一邊留下一個(gè)寬1米的門(mén),所圍成矩形雞舍的長(zhǎng)、寬分別是多少時(shí),雞舍面積為80平方米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知一次函數(shù)的圖象經(jīng)過(guò)點(diǎn)(-2,-2)和點(diǎn)(2,4).
(1)求這個(gè)函數(shù)的解析式;
(2)判斷點(diǎn) P(1,1)是否在此函數(shù)圖象上,并說(shuō)明理由.
(3)求這個(gè)函數(shù)的圖象與坐標(biāo)軸圍成的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

3.如圖,方格紙中的每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位的正方形,在建立平面直角坐標(biāo)系后,△ABC的頂點(diǎn)均在格點(diǎn)上,點(diǎn)C的坐標(biāo)為(4,-1).
①以O(shè)為位似中心在第二象限作位似比為1:2變換,得到對(duì)應(yīng)的△A1B1C1,畫(huà)出△A1B1C1,并寫(xiě)出C1的坐標(biāo);
②以原點(diǎn)O為旋轉(zhuǎn)中心,畫(huà)出把△ABC順時(shí)針旋轉(zhuǎn)90°的圖形△A2B2C2,并寫(xiě)出C2的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

4.解方程
(1)3x2-7x=0; 
(2)(2x-1)2=9          
(3)(x+1)2=6x+6.

查看答案和解析>>

同步練習(xí)冊(cè)答案