分析 (1)由點A、B的坐標利用待定系數(shù)法即可求出拋物線的解析式,再利用配方法即可求出拋物線頂點坐標;
(2)結(jié)合函數(shù)圖象以及A、B點的坐標即可得出結(jié)論;
(3)設(shè)P(x,y),根據(jù)三角形的面積公式以及S△PAB=10,即可算出y的值,代入拋物線解析式即可得出點P的坐標.
解答 解:(1)把A(-1,0)、B(3,0)分別代入y=x2+bx+c中,
得:$\left\{\begin{array}{l}{1-b+c=0}\\{9+3b+c=0}\end{array}\right.$,解得:$\left\{\begin{array}{l}{b=-2}\\{c=-3}\end{array}\right.$,
∴拋物線的解析式為y=x2-2x-3.
∵y=x2-2x-3=(x-1)2-4,
∴頂點坐標為(1,-4).
(2)由圖可得當0<x<3時,-4≤y<0.
(3)∵A(-1,0)、B(3,0),
∴AB=4.
設(shè)P(x,y),則S△PAB=$\frac{1}{2}$AB•|y|=2|y|=10,
∴|y|=5,
∴y=±5.
①當y=5時,x2-2x-3=5,解得:x1=-2,x2=4,
此時P點坐標為(-2,5)或(4,5);
②當y=-5時,x2-2x-3=-5,方程無解;
綜上所述,P點坐標為(-2,5)或(4,5).
點評 本題考查了待定系數(shù)法求函數(shù)解析式、三角形的面積公式以及二次函數(shù)圖象上點的坐標特征,解題的關(guān)鍵是:(1)利用待定系數(shù)法求出函數(shù)解析式;(2)根據(jù)函數(shù)圖象解不等式;(3)找出關(guān)于y的方程.本題屬于基礎(chǔ)題,難度不大,解決該題型題目時,根據(jù)點的坐標利用待定系數(shù)法求出函數(shù)解析式是關(guān)鍵.
科目:初中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
A. | 2 | B. | 3 | C. | 0 | D. | -3 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com