在△ABC中,AD平分∠BAC,BD⊥AD,垂足為D,過(guò)D作DE∥AC,交AB于E,若AB=5,求線段DE的長(zhǎng).
【考點(diǎn)】等腰三角形的判定與性質(zhì);平行線的性質(zhì).
【分析】求出∠CAD=∠BAD=∠EDA,推出AE=DE,求出∠ABD=∠EDB,推出BE=DE,求出AE=BE,根據(jù)直角三角形斜邊上中線性質(zhì)求出即可.
【解答】解:∵AD平分∠BAC,
∴∠BAD=∠CAD,
∵DE∥AC,
∴∠CAD=∠ADE,
∴∠BAD=∠ADE,
∴AE=DE,
∵AD⊥DB,
∴∠ADB=90°,
∴∠EAD+∠ABD=90°,∠ADE+∠BDE=∠ADB=90°,
∴∠ABD=∠BDE,
∴DE=BE,
∵AB=5,
∴DE=BE=AE=AB=2.5.
【點(diǎn)評(píng)】本題考查了平行線的性質(zhì),等腰三角形的性質(zhì)和判定,直角三角形斜邊上中線性質(zhì)的應(yīng)用,關(guān)鍵是求出DE=BE=AE.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
下列一元二次方程中.沒有實(shí)數(shù)根的是
A.x2+ 2x -4=0 B.x2- 4x +4=0
C.x2—2x -5 =0 D.x2+ 3x +4=0
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
從﹣4、﹣2、0、2、4這5個(gè)數(shù)中任取一個(gè)數(shù),作為關(guān)于x的一元二次方程x2+kx+4=0的k值,則所得的方程中有兩個(gè)相等的實(shí)數(shù)根的概率是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
下列圖形都是由同樣大小的五角星按一定的規(guī)律組成,其中第①個(gè)圖形一共有2個(gè)五角星,第②個(gè)圖形一共有8個(gè)五角星,第③個(gè)圖形一共有18個(gè)五角星,…,則第⑥個(gè)圖形中五角星的個(gè)數(shù)為( 。
A.50 B.64 C.68 D.72
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,△ABC的頂點(diǎn)都在方格線的交點(diǎn)(格點(diǎn))上,如果將△ABC繞C點(diǎn)按逆時(shí)針?lè)较蛐D(zhuǎn)90°,那么點(diǎn)B的對(duì)應(yīng)點(diǎn)B′的坐標(biāo)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,在△ABC中,∠B=45°,∠D=64°,AC=BC,則∠E的度數(shù)是( 。
A.45° B.26° C.36° D.64°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,在△ABC中,AD⊥BC垂足為點(diǎn)D,AD是BC邊上的中線,BE⊥AC,垂足為點(diǎn)E.則以下4個(gè)結(jié)論:①AB=AC;②∠EBC=;③AE=CE;④∠EBC=中正確的有( )
A.①② B.②③ C.①②③ D.①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖是每個(gè)面上都寫有漢子的正方體的一種展開圖,
則與“美”字相對(duì)的面的數(shù)字是( )
A.我 B.愛 C.當(dāng) D.陽(yáng)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com