在△ABC中,AD平分∠BAC,BD⊥AD,垂足為D,過(guò)D作DE∥AC,交AB于E,若AB=5,求線段DE的長(zhǎng).

 


【考點(diǎn)】等腰三角形的判定與性質(zhì);平行線的性質(zhì).

【分析】求出∠CAD=∠BAD=∠EDA,推出AE=DE,求出∠ABD=∠EDB,推出BE=DE,求出AE=BE,根據(jù)直角三角形斜邊上中線性質(zhì)求出即可.

【解答】解:∵AD平分∠BAC,

∴∠BAD=∠CAD,

∵DE∥AC,

∴∠CAD=∠ADE,

∴∠BAD=∠ADE,

∴AE=DE,

∵AD⊥DB,

∴∠ADB=90°,

∴∠EAD+∠ABD=90°,∠ADE+∠BDE=∠ADB=90°,

∴∠ABD=∠BDE,

∴DE=BE,

∵AB=5,

∴DE=BE=AE=AB=2.5.

【點(diǎn)評(píng)】本題考查了平行線的性質(zhì),等腰三角形的性質(zhì)和判定,直角三角形斜邊上中線性質(zhì)的應(yīng)用,關(guān)鍵是求出DE=BE=AE.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:


下列一元二次方程中.沒有實(shí)數(shù)根的是

  A.x2+ 2x -4=0                      B.x2- 4x +4=0

  C.x2—2x -5 =0                     D.x2+ 3x +4=0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


從﹣4、﹣2、0、2、4這5個(gè)數(shù)中任取一個(gè)數(shù),作為關(guān)于x的一元二次方程x2+kx+4=0的k值,則所得的方程中有兩個(gè)相等的實(shí)數(shù)根的概率是      

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


下列圖形都是由同樣大小的五角星按一定的規(guī)律組成,其中第①個(gè)圖形一共有2個(gè)五角星,第②個(gè)圖形一共有8個(gè)五角星,第③個(gè)圖形一共有18個(gè)五角星,…,則第⑥個(gè)圖形中五角星的個(gè)數(shù)為( 。

A.50     B.64     C.68     D.72

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


如圖,△ABC的頂點(diǎn)都在方格線的交點(diǎn)(格點(diǎn))上,如果將△ABC繞C點(diǎn)按逆時(shí)針?lè)较蛐D(zhuǎn)90°,那么點(diǎn)B的對(duì)應(yīng)點(diǎn)B′的坐標(biāo)是      

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


如圖,在△ABC中,∠B=45°,∠D=64°,AC=BC,則∠E的度數(shù)是( 。

A.45°   B.26°    C.36°   D.64°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


如圖,在△ABC中,AD⊥BC垂足為點(diǎn)D,AD是BC邊上的中線,BE⊥AC,垂足為點(diǎn)E.則以下4個(gè)結(jié)論:①AB=AC;②∠EBC=;③AE=CE;④∠EBC=中正確的有(  )

A.①② B.②③  C.①②③     D.①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


如圖是每個(gè)面上都寫有漢子的正方體的一種展開圖,

則與“美”字相對(duì)的面的數(shù)字是(   )

A.我        B.愛        C.當(dāng)         D.陽(yáng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


先化簡(jiǎn),再求值:

3÷(22,其中a=,b=

查看答案和解析>>

同步練習(xí)冊(cè)答案