分析 (1)根據(jù)利潤=(售價-進(jìn)價)×銷售件數(shù)即可求得W與x之間的函數(shù)關(guān)系式;
(2)利用配方法求得函數(shù)的最大值,從而可求得答案;
(3)根據(jù)每星期的銷售利潤不低于3420元列不等式求解即可.
解答 解:(1)w=(20-x)(200+20x)=-20x2+200x+4000,
∵200+20x≤280,
∴0≤x≤4,且x為整數(shù);
(2)w=-20x2+200x+4000=-20(x-5)2+4500,
∵當(dāng)x<5時,w隨x的增大而增大,
∴當(dāng)x=4時有最大利潤4480元;
(3)根據(jù)題意得:
-20(x-5)2+4500≥3420,
解得:5-3$\sqrt{6}$≤x≤5+3$\sqrt{6}$.
又∵x≤4,
∴0≤x≤4,
即售價不低于56元且不高于60元時,每星期利潤不低于3420元,
故答案為:56≤m≤60.
點(diǎn)評 此題考查二次函數(shù)的性質(zhì)及其應(yīng)用以及拋物線的基本性質(zhì),將實(shí)際問題轉(zhuǎn)化為求函數(shù)最值問題,從而來解決實(shí)際問題是解題關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com