【題目】如圖,在矩形ABCD中,E、F分別是邊AB、CD上的點(diǎn),AE=CF,連接EF、BF,EF與對(duì)角線(xiàn)AC交于點(diǎn)O,且BE=BF,∠BEF=2∠BAC。
(1)求證;OE=OF;(2)若BC=,求AB的長(zhǎng)。
【答案】(1)證明見(jiàn)解析;(2)3.
【解析】分析:(1)根據(jù)矩形的對(duì)邊平行可得AB∥CD,再根據(jù)兩直線(xiàn)平行,內(nèi)錯(cuò)角相等求出∠BAC=∠FCO,然后利用“角角邊”證明△AOE和△COF全等,再根據(jù)全等三角形的即可得證;
(2)連接OB,根據(jù)等腰三角形三線(xiàn)合一的性質(zhì)可得BO⊥EF,再根據(jù)矩形的性質(zhì)可得OA=OB,根據(jù)等邊對(duì)等角的性質(zhì)可得∠BAC=∠ABO,再根據(jù)三角形的內(nèi)角和定理列式求出∠ABO=30°,即∠BAC=30°,根據(jù)直角三角形30°角所對(duì)的直角邊等于斜邊的一半求出AC,再利用勾股定理列式計(jì)算即可求出AB.
詳解:(1)證明:在矩形ABCD中,AB∥CD,
∴∠BAC=∠FCO,
在△AOE和△COF中,
在△AOE和△COF中,
,
∴△AOE≌△COF(AAS),
∴OE=OF;
(2)解:如圖,連接OB,
∵BE=BF,OE=OF,∴BO⊥EF,
∴在Rt△BEO中,∠BEF+∠ABO=90°,
由直角三角形斜邊上的中線(xiàn)等于斜邊上的一半可知:OA=OB=OC,
∴∠BAC=∠ABO, 又∵∠BEF=2∠BAC, 即2∠BAC+∠BAC=90°,
解得∠BAC=30°, ∵BC=, ∴AC=2BC=2,
∴AB==3
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩人加工同一種機(jī)器零件,甲比乙每小時(shí)多加工10個(gè)零件,甲加工150個(gè)零件所用的時(shí)間與乙加工120個(gè)零件所用時(shí)間相等
(1)求甲、乙兩人每小時(shí)各加工多少個(gè)機(jī)器零件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)為打造書(shū)香校園,計(jì)劃購(gòu)進(jìn)甲、乙兩種規(guī)格的書(shū)柜放置新購(gòu)進(jìn)的圖書(shū),調(diào)查發(fā)現(xiàn),若購(gòu)買(mǎi)甲種書(shū)柜3個(gè)、乙種書(shū)柜2個(gè),共需資金1020元;若購(gòu)買(mǎi)甲種書(shū)柜4個(gè),乙種書(shū)柜3個(gè),共需資金1440元.
(1)甲、乙兩種書(shū)柜每個(gè)的價(jià)格分別是多少元?
(2)若該校計(jì)劃購(gòu)進(jìn)這兩種規(guī)格的書(shū)柜共20個(gè),其中乙種書(shū)柜的數(shù)量不少于甲種書(shū)柜的數(shù)量,學(xué)校至多能夠提供資金4320元,請(qǐng)?jiān)O(shè)計(jì)幾種購(gòu)買(mǎi)方案供這個(gè)學(xué)校選擇.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,正方形ABCD中,點(diǎn)E、F分別在邊DC、AD上,且AE⊥BF于G.
(1)求證:BF=AE;
(2)如圖2,當(dāng)點(diǎn)E在DC延長(zhǎng)線(xiàn)上,點(diǎn)F在AD延長(zhǎng)線(xiàn)上時(shí),(1)中結(jié)論是否成立?(直接寫(xiě)結(jié)論)
(3)在圖2中,若點(diǎn)M、N、P、Q分別為四邊形AFEB四條邊AF、EF、EB、AB的中點(diǎn),且AF:AD=4:3,求S四邊形MNPQ:S正方形ABCD .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】勾股定理與黃金分割是幾何中的雙寶,前者好比黃金,后者堪稱(chēng)珠玉.生活中到處可見(jiàn)黃金分割的美.如圖,線(xiàn)段AB=1,點(diǎn)P1是線(xiàn)段AB的黃金分割點(diǎn)(AP1<BP1),點(diǎn)P2是線(xiàn)段AP1的黃金分割點(diǎn)(AP2<P1P2),點(diǎn)P3是線(xiàn)段AP2的黃金分割點(diǎn)(AP3<P2P3),…,依此類(lèi)推,則APn的長(zhǎng)度是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,有甲、乙兩個(gè)可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤(pán),其中轉(zhuǎn)盤(pán)甲被平均分成三個(gè)扇形,轉(zhuǎn)盤(pán)乙被平均分成五個(gè)扇形,小明與小亮玩轉(zhuǎn)盤(pán)游戲,規(guī)則如下:同時(shí)轉(zhuǎn)動(dòng)兩個(gè)轉(zhuǎn)盤(pán),轉(zhuǎn)盤(pán)停止后,轉(zhuǎn)盤(pán)中甲指針?biāo)笖?shù)字作為點(diǎn)的橫坐標(biāo),轉(zhuǎn)盤(pán)乙指針?biāo)笖?shù)字作為點(diǎn)的縱坐標(biāo),從而確定一個(gè)點(diǎn)的坐標(biāo)為A(m,n).當(dāng)點(diǎn)A在第一象限時(shí),小明贏;當(dāng)點(diǎn)A在第二象限時(shí),小亮贏.請(qǐng)你利用畫(huà)樹(shù)狀圖或列表法分析該游戲規(guī)則對(duì)雙方是否公平?并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,在△ABC中,∠BAC=90°,∠ABC=45°,點(diǎn)D為直線(xiàn)BC上一動(dòng)點(diǎn)(點(diǎn)D不與點(diǎn)B,C重合).以AD為邊作正方形ADEF,連接CF.
(1)如圖1,當(dāng)點(diǎn)D在線(xiàn)段BC上時(shí).求證:CF+CD=BC;
(2)如圖2,當(dāng)點(diǎn)D在線(xiàn)段BC的延長(zhǎng)線(xiàn)上時(shí),其他條件不變,請(qǐng)直接寫(xiě)出CF,BC,CD三條線(xiàn)段之間的關(guān)系;
(3)如圖3,當(dāng)點(diǎn)D在線(xiàn)段BC的反向延長(zhǎng)線(xiàn)上時(shí),且點(diǎn)A,F(xiàn)分別在直線(xiàn)BC的兩側(cè),其他條件不變;
①請(qǐng)直接寫(xiě)出CF,BC,CD三條線(xiàn)段之間的關(guān)系;
②若正方形ADEF的邊長(zhǎng)為2,對(duì)角線(xiàn)AE,DF相交于點(diǎn)O,連接OC.求OC的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,O是矩形ABCD的對(duì)角線(xiàn)的交點(diǎn),作DE∥AC,CE∥BD,DE、CE相交于點(diǎn)E.求證:
(1)四邊形OCED是菱形.
(2)連接OE,若AD=4,CD=3,求菱形OCED的周長(zhǎng)和面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,BC=8,tanB= ,點(diǎn)D在BC上,且BD=AD,求AC的長(zhǎng)和cos∠ADC的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com