【題目】如圖,已知在直角坐標(biāo)系中,的頂點(diǎn)都在網(wǎng)絡(luò)格上:
(1)請(qǐng)寫出點(diǎn)的坐標(biāo);
(2)先畫出先向軸正方向平移個(gè)單位長(zhǎng)度,得到;請(qǐng)寫出點(diǎn)的坐標(biāo).
【答案】(1)(-3,2),(-4,-3),(0,-2) (2)圖見解析;(1,2),(0,-3),(4,-2)
【解析】
(1)根據(jù)平面直角坐標(biāo)系和網(wǎng)格圖可得出點(diǎn)的坐標(biāo);
(2)把點(diǎn)分別沿軸正方向平移個(gè)單位長(zhǎng)度,得到,連接三點(diǎn)得到,寫出三頂點(diǎn)坐標(biāo)即可.
(1)根據(jù)圖形可知,點(diǎn)A、B、C的坐標(biāo)分別為:(-3,2),(-4,-3),(0,-2),
故答案為:(-3,2),(-4,-3),(0,-2);
(2)把點(diǎn)分別沿軸正方向平移個(gè)單位長(zhǎng)度后得到,則三個(gè)頂點(diǎn)的坐標(biāo)分別為:(1,2),(0,-3),(4,-2),
故答案為:(1,2),(0,-3),(4,-2).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,D是BC的中點(diǎn),AC的垂直平分線分別交AC,AD,AB于點(diǎn)E,O,F(xiàn),則圖中全等三角形的對(duì)數(shù)是( )
A.1對(duì)
B.2對(duì)
C.3對(duì)
D.4對(duì)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)A的坐標(biāo)是(﹣1,0),點(diǎn)B的坐標(biāo)是(9,0),以AB為直徑作⊙O′,交y軸的負(fù)半軸于點(diǎn)C,連接AC、BC,過A、B、C三點(diǎn)作拋物線.
(1)求點(diǎn)C的坐標(biāo)及拋物線的解析式;
(2)點(diǎn)E是AC延長(zhǎng)線上一點(diǎn),∠BCE的平分線CD交⊙O′于點(diǎn)D,求點(diǎn)D的坐標(biāo);并直接寫出直線BC、直線BD的解析式;
(3)在(2)的條件下,拋物線上是否存在點(diǎn)P,使得∠PDB=∠CBD,若存在,請(qǐng)求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了鼓勵(lì)市民節(jié)約用水,某市水費(fèi)實(shí)行階梯式計(jì)量水價(jià).每戶每月用水量不超過25噸,收
費(fèi)標(biāo)準(zhǔn)為每噸a元;若每戶每月用水量超過25噸時(shí),其中前25噸還是每噸a元,超出的部
分收費(fèi)標(biāo)準(zhǔn)為每噸b元.下表是小明家一至四月份用水量和繳納水費(fèi)情況.根據(jù)表格提供的數(shù)
據(jù),回答:
月份 | 一 | 二 | 三 | 四 |
用水量(噸) | 16 | 18 | 30 | 35 |
水費(fèi)(元) | 32 | 36 | 65 | 80 |
(1)a=________;b=________;
(2)若小明家五月份用水32噸,則應(yīng)繳水費(fèi) 元;
(3)若小明家六月份應(yīng)繳水費(fèi)102.5元,則六月份他們家的用水量是多少噸?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知在數(shù)軸上有A、 B兩點(diǎn),點(diǎn)A表示的數(shù)是-6,點(diǎn)B表示的數(shù)是9.點(diǎn)P在數(shù)軸上從點(diǎn)A出發(fā),以每秒2個(gè)單位的速度沿?cái)?shù)軸正方向運(yùn)動(dòng),同時(shí),點(diǎn)Q在數(shù)軸上從點(diǎn)B出發(fā),以每秒3個(gè)單位的速度沿?cái)?shù)軸負(fù)方向運(yùn)動(dòng),當(dāng)點(diǎn)Q到達(dá)點(diǎn)A時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1) AB=____ ;當(dāng)t=1時(shí),點(diǎn)Q表示的數(shù)是___ ;當(dāng)t=___時(shí),P、Q兩點(diǎn)相遇;
(2)如圖2,若點(diǎn)M為線段AP的中點(diǎn),點(diǎn)N為線段BP中點(diǎn),點(diǎn)P在運(yùn)動(dòng)過程中,線段MN的長(zhǎng)度是否發(fā)生變化?若變化,請(qǐng)說明理由.若不變,請(qǐng)求出線段MN的長(zhǎng);
(3)如圖3,若點(diǎn)M為線段的AP中點(diǎn),點(diǎn)T為線段BQ中點(diǎn),則點(diǎn)M表示的數(shù)為______;點(diǎn)T表示的數(shù)為______;MT=______ (用含t的代數(shù)式填空).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知tan∠EOF=2,點(diǎn)C在射線OF上,OC=12.點(diǎn)M是∠EOF內(nèi)一點(diǎn),MC⊥OF于點(diǎn)C,MC=4.在射線CF上取一點(diǎn)A,連結(jié)AM并延長(zhǎng)交射線OE于點(diǎn)B,作BD⊥OF于點(diǎn)D.
(1)當(dāng)AC的長(zhǎng)度為多少時(shí),△AMC和△BOD相似;
(2)當(dāng)點(diǎn)M恰好是線段AB中點(diǎn)時(shí),試判斷△AOB的形狀,并說明理由;
(3)連結(jié)BC.當(dāng)S△AMC=S△BOC時(shí),求AC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某班在一次班會(huì)課上,就“遇見路人摔倒后如何處理”的主題進(jìn)行討論,并對(duì)全班 50 名學(xué)生的處理方式進(jìn)行統(tǒng)計(jì),得出相關(guān)統(tǒng)計(jì)表和統(tǒng)計(jì)圖.
組別 | A | B | C | D |
處理方式 | 迅速離開 | 馬上救助 | 視情況而定 | 只看熱鬧 |
人數(shù) | m | 30 | n | 5 |
請(qǐng)根據(jù)表圖所提供的信息回答下列問題:
(1)統(tǒng)計(jì)表中的 m= ,n= ;
(2)補(bǔ)全頻數(shù)分布直方圖;
(3)若該校有 2000 名學(xué)生,請(qǐng)據(jù)此估計(jì)該校學(xué)生采取“馬上救助”方式的學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,∠A=30°,AB=5,點(diǎn)P是AC上的動(dòng)點(diǎn),連接BP,以BP為邊作等邊△BPQ,連接CQ,則點(diǎn)P在運(yùn)動(dòng)過程中,線段CQ長(zhǎng)度的最小值是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖(1),已知:在△ABC中,∠BAC=90°,AB=AC,直線m經(jīng)過點(diǎn)A,BD⊥直線m, CE⊥直線m,垂足分別為點(diǎn)D、E.證明:DE=BD+CE.
(2) 如圖(2),將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點(diǎn)都在直線m上,并且有∠BDA=∠AEC=∠BAC=,其中為任意銳角或鈍角.請(qǐng)問結(jié)論DE=BD+CE是否成立?如成立,請(qǐng)你給出證明;若不成立,請(qǐng)說明理由.
(3)拓展與應(yīng)用:如圖(3),D、E是D、A、E三點(diǎn)所在直線m上的兩動(dòng)點(diǎn)(D、A、E三點(diǎn)互不重合),點(diǎn)F為∠BAC平分線上的一點(diǎn),且△ABF和△ACF均為等邊三角形,連接BD、CE,若∠BDA=∠AEC=∠BAC,試判斷△DEF的形狀.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com