【題目】如圖,二次函數(shù)的圖象與軸的一個(gè)交點(diǎn)為,另一個(gè)交點(diǎn)為,且與軸相交于點(diǎn)

1)則_________;點(diǎn)坐標(biāo)為___________;

2)在直線上方的拋物線上是否存在一點(diǎn),使得它與,兩點(diǎn)構(gòu)成的三角形面積最大,若存在,求出此時(shí)點(diǎn)坐標(biāo);若不存在,請(qǐng)簡(jiǎn)要說明理由.

3為拋物線上一點(diǎn),它關(guān)于直線的對(duì)稱點(diǎn)為

①當(dāng)四邊形為菱形時(shí),求點(diǎn)的坐標(biāo);

②點(diǎn)的橫坐標(biāo)為,當(dāng)________時(shí),四邊形的面積最大.

【答案】14,(0,4);(2)存在,(26);(3)①點(diǎn)坐標(biāo)為;②2.

【解析】

1)用待定系數(shù)法求出拋物線解析式;

2)先判斷出面積最大時(shí),平移直線BC的直線和拋物線只有一個(gè)交點(diǎn),從而求出點(diǎn)M坐標(biāo);

3先判斷出四邊形PBQC時(shí)菱形時(shí),點(diǎn)P是線段BC的垂直平分線,利用該特殊性建立方程求解;

先求出四邊形PBCQ的面積與t的函數(shù)關(guān)系式,從而確定出它的最大值.

解:(1)將B40)代入y=-x23xm,

解得,m4,

∴二次函數(shù)解析式為y=-x23x4

x0,得y4,

C0,4),

故答案為:4,(0,4);

2)存在,

理由:∵B40),C04),

∴直線BC解析式為y=-x4,

當(dāng)直線BC向上平移b單位后和拋物線只有一個(gè)公共點(diǎn)時(shí),△MBC面積最大,

,

x24xb0

∴△=164b0,

b4,

M2,6),

3如圖,

∵點(diǎn)P在拋物線上,

∴設(shè)Pm,-m23m4),

當(dāng)四邊形PBQC是菱形時(shí),點(diǎn)P在線段BC的垂直平分線上,

B4,0),C04

∴線段BC的垂直平分線的解析式為yx,

m=-m23m4

m1±,

P1,1)或P11),

如圖,

設(shè)點(diǎn)Pt,-t23t4),

過點(diǎn)Py軸的平行線l,過點(diǎn)Cl的垂線,

∵點(diǎn)D在直線BC上,

Dt,-t4),

PD=-t23t4-(-t4

=-t24t,

BECF4

S四邊形PBQC2SPCB

2SPCDSPBD

2PD×CFPD×BE

4PD

=-4t216t,

0t4,

∴當(dāng)t2時(shí),S四邊形PBQC最大16,

故答案為:2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,對(duì)于點(diǎn)Px,y)和Qxy′),給出如下定義:如果y′=,那么稱點(diǎn)Q為點(diǎn)P的“伴隨點(diǎn)”.

例如:點(diǎn)(5,6)的“伴隨點(diǎn)”為點(diǎn)(56);點(diǎn)(﹣56)的“伴隨點(diǎn)”為點(diǎn)(﹣5,﹣6).

1)直接寫出點(diǎn)A2,1)的“伴隨點(diǎn)”A′的坐標(biāo).

2)點(diǎn)Bm,m+1)在函數(shù)ykx+3的圖象上,若其“伴隨點(diǎn)”B′的縱坐標(biāo)為2,求函數(shù)ykx+3的解析式.

3)點(diǎn)CD在函數(shù)y=﹣x2+4的圖象上,且點(diǎn)CD關(guān)于y軸對(duì)稱,點(diǎn)D的“伴隨點(diǎn)”為D′.若點(diǎn)C在第一象限,且CDDD′,求此時(shí)“伴隨點(diǎn)”D′的橫坐標(biāo).

4)點(diǎn)E在函數(shù)y=﹣x2+n(﹣1x2)的圖象上,若其“伴隨點(diǎn)”E′的縱坐標(biāo)y′的最大值為m1m3),直接寫出實(shí)數(shù)n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將平行四邊形紙片按如圖方式折疊,使點(diǎn)重合,點(diǎn) 落到處,折痕為

(1)求證:;

(2)連結(jié),判斷四邊形是什么特殊四邊形?證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖, 拋物線軸交于點(diǎn)A(-1,0),頂點(diǎn)坐標(biāo)(1,n)與軸的交點(diǎn)在(0,2),(0,3)之間(包 含端點(diǎn)),則下列結(jié)論:①;②;③對(duì)于任意實(shí)數(shù)m,總成立;④關(guān)于的方程有兩個(gè)不相等的實(shí)數(shù)根.其中結(jié)論正確的個(gè)數(shù)為  

A. 1 個(gè) B. 2 個(gè) C. 3 個(gè) D. 4 個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】探究:已知二次函數(shù)經(jīng)過點(diǎn).

1)求該函數(shù)的表達(dá)式;

2)如圖所示,點(diǎn)是拋物線上在第二象限內(nèi)的一個(gè)動(dòng)點(diǎn),且點(diǎn)的橫坐標(biāo)為,連接,.

①求的面積關(guān)于的函數(shù)關(guān)系式;

②求的面積的最大值,并求出此時(shí)點(diǎn)的坐標(biāo).

拓展:在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)為,的坐標(biāo)為,若拋物線與線段有兩個(gè)不同的交點(diǎn),請(qǐng)直接寫出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是邊長(zhǎng)為的等邊三角形,邊在射線上,且,點(diǎn)從點(diǎn)出發(fā),沿OM的方向以1cm/s的速度運(yùn)動(dòng),當(dāng)D不與點(diǎn)A重合時(shí),將繞點(diǎn)C逆時(shí)針方向旋轉(zhuǎn)60°得到,連接DE.

(1)如圖1,求證:是等邊三角形;

(2)如圖2,當(dāng)6<t<10時(shí),DE是否存在最小值?若存在,求出DE的最小值;若不存在,請(qǐng)說明理由.

(3)當(dāng)點(diǎn)D在射線OM上運(yùn)動(dòng)時(shí),是否存在以D,E,B為頂點(diǎn)的三角形是直角三角形?若存在,求出此時(shí)t的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)的圖像交軸于,兩點(diǎn),交軸于點(diǎn),連接,已知

1)點(diǎn)的坐標(biāo)是______;

2)若點(diǎn)是拋物線上的任意一點(diǎn),連接、

①當(dāng)的面積相等時(shí),求點(diǎn)的坐標(biāo);

②把沿著翻折,若點(diǎn)與拋物線對(duì)稱軸上的點(diǎn)重合,直接寫出點(diǎn)的橫坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在中,,點(diǎn)上,以為直徑的相交于點(diǎn),與相交于點(diǎn),平分

1)求證:的切線;

2)若,,求圖中陰影部分的面積;

3)若,,求

查看答案和解析>>

同步練習(xí)冊(cè)答案