【題目】如圖,在△ABC中,AB=AC,∠BAC=540,以AB為直徑的⊙O分別交AC,BC于點D,E,過點B作⊙O的切線,交AC的延長線于點F。
(1)求證:BE=CE;
(2)求∠CBF的度數(shù);
(3)若AB=6,求的長。
【答案】解:(1)如圖,連接AE,
∵AB是⊙O的直徑,
∴∠AEB=900,即AE⊥BC。
又∵AB=AC,∴BE=CE。
(2)∵∠BAC=540,AB=AC,∴∠ABC=630。
又∵BF是⊙O的切線,∴∠ABF=900。
∴∠CBF=∠ABF一∠ABC=270。
(3)連接OD,
∵OA=OD,∠BAC=540,∴∠AOD=720。
又∵AB=6,∴OA=2。
∴。
【解析】(1)連接AE,則根據(jù)直徑所對圓周角是直角的性質(zhì)得AE⊥BC,從而根據(jù)等腰三角形三線合一的性質(zhì)得出結(jié)論。
(2)由∠BAC=540,AB=AC,根據(jù)等腰三角形等邊對等角的性質(zhì)和三角形內(nèi)角和等于零180度求得∠ABC=630;由切線垂直于過切點直徑的性質(zhì)得∠ABF=900,從而由∠CBF=∠ABF一∠ABC得出結(jié)論。
(3)連接OD,根據(jù)同弧所對圓周角是圓心角一半的性質(zhì),求得∠AOD=720,根據(jù)弧長公式即可求。
科目:初中數(shù)學 來源: 題型:
【題目】操作與證明:
如圖1,把一個含45°角的直角三角板ECF和一個正方形ABCD擺放在一起,使三角板的直角頂點和正方形的頂點C重合,點E、F分別在正方形的邊CB、CD上,連接AF.取AF中點M,EF的中點N,連接MD、MN.
(1)連接AE,求證:△AEF是等腰三角形;
猜想與發(fā)現(xiàn):
(2)在(1)的條件下,請判斷線段MD與MN的關系,得出結(jié)論;
結(jié)論:DM、MN的關系是: ;
拓展與探究:
(3)如圖2,將圖1中的直角三角板ECF繞點C旋轉(zhuǎn)180°,其他條件不變,則(2)中的結(jié)論還成立嗎?若成立,請加以證明;若不成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在長方形ABCD中,點E,F分別是BC,DC上的動點.沿EF 折疊△CEF,使點C的對稱點G落在AD上,若AB=3,BC=5,求CF的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在四邊形ABCD中,AB=CD,E,F分別為邊BC與AD的中點,AE∥CD,延長BA,CD,分別與EF的延長線交于點G,H,連接AH,ED.
(1)求證:AH∥ED;
(2)求證:AE=AG.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商店將進貨價每個10元的商品按售價18元售出時,每天可賣出60個.商店經(jīng)理到市場上做了一番調(diào)查后發(fā)現(xiàn),若將這種商品的售價每提高1元,則日銷售量就減少5個;若將這種商品的售價每降低1元,則日銷售量就增加10個。為獲得每日最大利潤,此商品售價應定為每個多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明用a小時清點完一批圖書的一半,小強加入清點另一半圖書的工作,兩人合作小時清點完另一半圖書.設小強單獨清點完這批圖書需要x小時.
(1)若a=3,求小強單獨清點完這批圖書需要的時間.
(2)請用含a的代數(shù)式表示x,并說明a滿足什么條件時x的值符合實際意義.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,OA,OB是⊙O的兩條半徑,OA⊥OB,C是半徑OB上的一動點,連接AC并延長交⊙O于D,過點D作直線交OB延長線于E,且DE=CE,已知OA=8.
(1)求證:ED是⊙O的切線;
(2)當∠A=30°時,求CD的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com