【題目】如圖,已知線段AB=12厘米,動點P以2厘米/秒的速度從點A出發(fā)向點B運動,動點Q以4厘米/秒的速度從點B出發(fā)向點A運動.兩點同時出發(fā),到達各自的終點后停止運動.設(shè)兩點之間的距離為s(厘米),動點P的運動時間為t秒,則下圖中能正確反映s與t之間的函數(shù)關(guān)系的是( )
A. B.
C. D.
【答案】D
【解析】
根據(jù)題意可以得到點P運動的慢,點Q運動的快,可以算出動點P和Q相遇時用的時間和點B到達終點時的時間,從而可以解答本題.
解:設(shè)動點P和Q相遇時用的時間為x,
12=2x+4x
解得,x=2
此時,點Q離開點B的距離為:4×2=8cm,點P離開點A的距離為:2×2=4cm,
相遇后,點Q到達終點用的時間為:(12-8)÷4=1s,點P到達終點用的時間為:(12-4)÷2=4s
由上可得,剛開始P和Q兩點間的距離在越來越小直到相遇時,它們之間的距離變?yōu)?/span>0,此時用的時間為2s;
相遇后,在第3s時點Q到達終點,從相遇到點Q到達終點它們的距離在變大,總的速度與相遇前總的速度都是兩個動點的速度之和;
點Q到達終點之后,點P繼續(xù)運動,但是運動的速度相對兩個動點同時運動的速度小,即圖象對應(yīng)函數(shù)圖象的傾斜度變。
故選:D.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,活動課上,小玥想要利用所學(xué)的數(shù)學(xué)知識測量某個建筑地所在山坡AE的高度,她先在山腳下的點E處測得山頂A的仰角是30°,然后,她沿著坡度i=1:1的斜坡按速度20米/分步行15分鐘到達C處,此時,測得點A的俯角是15°.圖中點A、B、E、D、C在同一平面內(nèi),且點D、E、B在同一水平直線上,求出建筑地所在山坡AE的高度AB.(精確到0.1米,參考數(shù)據(jù):≈1.41).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖表示的是熱帶風(fēng)暴從發(fā)生到結(jié)束的全過程,請結(jié)合圖象回答下列問題:
(1)熱帶風(fēng)暴從開始發(fā)生到結(jié)束共經(jīng)歷了 個小時;
(2)從圖象上看,風(fēng)速在 (小時)時間段內(nèi)增大的最快?最大風(fēng)速是 千米/時;
(3)風(fēng)速從開始減小到最終停止,平均每小時減小多少千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖4,已知拋物線y=ax2+bx+c(a>0)經(jīng)過點A(2,0),B(6,0),交y軸于點C,且S△ABC=16.
(1)求點C的坐標(biāo);
(2)求拋物線的解析式及其對稱軸;
(3)若正方形DEFG內(nèi)接于拋物線和x軸(邊FG在x軸上,點D,E分別在拋物線上),求S正方形DEFG.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩個工程隊計劃修建一條長15千米的鄉(xiāng)村公路,已知甲工程隊每天比乙工程隊每天多修路0.5千米,乙工程隊單獨完成修路任務(wù)所需天數(shù)是甲工程隊單獨完成修路任務(wù)所需天數(shù)的1.5倍.
(1)求甲、乙兩個工程隊每天各修路多少千米?
(2)若甲工程隊每天的修路費用為0.5萬元,乙工程隊每天的修路費用為0.4萬元,要使兩個工程隊修路總費用不超過5.2萬元,甲工程隊至少修路多少天?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊△ABC中,AB=6,N為線段AB上的任意一點,∠BAC的平分線交BC于點D,M是AD上的動點, 連結(jié)BM、MN,則BM+MN的最小值是_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】九年一班組織班級聯(lián)歡會,最后進入抽獎環(huán)節(jié),每名同學(xué)都有一次抽獎機會,小強拿出一個箱子說:“這個不透明的箱子里裝有紅、白球各1個和若干個黃球,它們除了顏色外其余都相同,誰能同時摸出兩個黃球誰就獲得一等獎”.已知任意摸出一個球是黃球的概率為.
(1)請直接寫出箱子里有黃球 個;
(2)請用列表或樹狀圖求獲得一等獎的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,是全國最大的瓷碗造型建筑坐落于江西景德鎮(zhèn),整體造型概念來自“宋代影青斗笠碗”,造型莊重典雅,象征“萬瓷之母”.小敏為了計算該建筑物的橫斷面(瓷碗橫斷面ABCD為等腰梯形)的高度如圖2,她站在與瓷碗底部AB位于同一水平面的點P處測得瓷碗頂部點D的仰角為45°,而后沿著一段坡度為0.44的小坡PQ步行到點Q(此過程中AD、AP、PQ始終處于同一平面)后測得點D的仰角減少了5°.
已知坡PQ的水平距離為20米,小敏身高忽略不計.
(1)試計算該瓷碗建筑物的高度?
(2)小敏測得AD與水平面夾角約為58°,底座直徑AB約為20米,試計算碗口CD的直徑為多少米?
坡度:坡與水平線夾角的正切值.
參考數(shù)據(jù):sin40°≈0.64,tan40°≈0.84,sin58°≈0.85,tan58°≈1.60.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠A=36°,BD、CE分別是∠ABC、∠BCD的平分線,則圖中的等腰三角形有( )
A.5個B.4個C.3個D.2個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com