【題目】如圖,是半的直徑,、是半圓的三等分點,若,是直徑上的任意一點,則圖中陰影部分的面積是________.
【答案】
【解析】
連CD,OC,OD,根據(jù)圓周角定理得到∠AOC=∠COD=∠BOD,則∠AOC=∠COD=60°,得到△OCD為等邊三角形,則∠OCD=60°,判斷CD∥AB,得到S△PCD=S△OCD,則陰影部分的面積=S半圓-S扇形OCD,然后利用圓的面積公式和扇形的面積公式計算即可.
連CD,OC,OD,如圖,
∵AB是半⊙O的直徑,C、D是半圓的三等分點,
∴∠AOC=∠COD=∠BOD,
∴∠AOC=∠COD=60°,
∴△OCD為等邊三角形,
∴∠OCD=60°,
∴CD∥AB,
∴S△PCD=S△OCD,
∴陰影部分的面積=S半圓-S扇形OCD,
=π×12-,
=π.
故答案為:π.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一圓弧形橋拱的圓心為,拱橋的水面跨度米,橋拱到水面的最大高度為米.求:
橋拱的半徑;
現(xiàn)水面上漲后水面跨度為米,求水面上漲的高度為________米.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直角坐標系中,長方形ABCD(每個內(nèi)角都是90°)的頂點的坐標分別是A(0,m),B(n,0),(m>n>0),點E在AD上,AE=AB,點F在y軸上,OF=OB,BF的延長線與DA的延長線交于點M,EF與AB交于點N.
(1)試求點E的坐標(用含m,n的式子表示);
(2)求證:AM=AN;
(3)若AB=CD=12cm,BC=20cm,動點P從B出發(fā),以2cm/s的速度沿BC向C運動的同時,動點Q從C出發(fā),以vcm/s的速度沿CD向D運動,是否存在這樣的v值,使得△ABP與△PQC全等?若存在,請求出v值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】4張相同的卡片分別寫著數(shù)字-1、-3、4、6,將卡片的背面朝上,并洗勻.
(1)從中任意抽取1張,抽到的數(shù)字是奇數(shù)的概率是________;
(2)從中任意抽取1張,并將所取卡片上的數(shù)字記作一次函數(shù)中的k;再從余下的卡片中任意抽取1張,并將所取卡片上的數(shù)字記作一次函數(shù)中的b.利用畫樹狀圖或列表的方法,求這個一次函數(shù)的圖象經(jīng)過第一、二、四象限的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某年級共有300名學生,為了解該年級學生A,B兩門課程的學習情況,從中隨機抽取60名學生進行測試,獲得了他們的成績(百分制)、并對數(shù)據(jù)(成績)進行整理、描述和分析,下面給出了部分信息.
a.A課程成績的頻數(shù)分布直方圖如下(數(shù)據(jù)分成6組:40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x<100);
b.A課程成績在70≤x<80這一組的是:
70 71 71 71 76 76 77 78 78.5 78.5 79 79 79 79.5
c.A,B兩門課程成績的平均數(shù)、中位數(shù)、眾數(shù)如下:
課程 | 平均數(shù) | 中位數(shù) | 眾數(shù) |
A | 75.8 | m | 84.5 |
B | 72.2 | 70 | 83 |
根據(jù)以上信息,回答下列問題:
(1)寫出表中m的值;
(2)在此次測試中,某學生的A課程成績?yōu)?6分,B課程成績?yōu)?1分,這名學生成績排名更靠前的課程是______(填“A”或“B”),理由是________________________________;
(3)假設(shè)該年級學生都參加此次測試,估計A課程成績超過75.8分的人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】圖①是一起吊重物的簡單裝置,AB是吊桿,當它傾斜時,將重物掛起,當它逐漸直立時,重物便能逐漸升高.在陽光下,當?shù)鯒U的傾斜角∠ABC=60°時,量得吊桿的影子長BC=11.5米,很快將吊桿直立(直立過程所需的時間忽略不計),如圖②,AB與地面垂直時,量得吊桿AB的影長BC=4米,求吊桿AB的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠ABC=72°.
(1)用直尺和圓規(guī)作∠ABC的平分線BD交AC于點D(保留作圖痕跡,不要求寫作法);
(2)在(1)中作出∠ABC的平分線BD后,求∠BDC的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com