【題目】解方程或方程組.
(1) (2)
(3) (4)
【答案】(1)x=;(2)x=3;(3);(4)
【解析】
(1)移項、合并同類項,系數(shù)化成1即可求解.
(2)去分母、去括號、移項、合并同類項,系數(shù)化成1即可求解.
(3)利用加減消元法求解即可;
(4)利用加減消元法求解即可.
(1)
移項得,8x-2x=-7,
合并同類項得,6x=-7,
系數(shù)化為1得,x=;
(2)
去分母得,5x-1=14
移項,合并同類項得,5x=15,
系數(shù)化為1得,x=3;
(3)
①+②得,4x=20,
解得,x=5,
把x=5代入①得,5-y=4,
解得,y=1,
所以,方程組的解為
(4)
①×2-②得,3x=6,
解得x=2,
把x=2代入①得,4+y=5,
解得,y=1,
所以,方程組的解為:.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有大小兩種貨車,3輛大貨車與2輛小貨車一次可以運貨21噸,2輛大貨車與4輛小貨車一次可以運貨22噸.
(1)每輛大貨車和每輛小貨車一次各可以運貨多少噸?
(2)現(xiàn)有這兩種貨車共10輛,要求一次運貨不低于35噸,則其中大貨車至少多少輛?(用不等式解答)
(3)日前有23噸貨物需要運輸,欲租用這兩種貨車運送,要求全部貨物一次運完且每輛車必須裝滿.已知每輛大貨車一次運貨租金為300元,每輛小貨車一次運貨租金為200元,請列出所有的運輸方案井求出最少租金.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場為了吸引顧客,設(shè)立了一個如圖可以自由轉(zhuǎn)動的轉(zhuǎn)盤,并規(guī)定:顧客每購買300元的商品,就能獲得一次轉(zhuǎn)動轉(zhuǎn)盤的機會.如果轉(zhuǎn)盤停止后,指針正好對準紅、綠或黃色區(qū)域,顧客就可以獲得100元、50元,20元的購物券.(轉(zhuǎn)盤被等分成20個扇形),已知甲顧客購物320元.
(1)他獲得購物券的概率是多少?
(2)他得到100元、50元、20元購物券的概率分別是多少?
(3)若要讓獲得20元購物券的概率變?yōu)?/span>,則轉(zhuǎn)盤的顏色部分怎樣修改?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】射擊隊為從甲、乙兩名運動員中選拔一人參加比賽,對他們進行了六次測試,測試成績?nèi)缦卤恚▎挝唬涵h(huán)):
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | 第六次 | 平均成績 | 中位數(shù) | |
甲 | 10 | 8 | 9 | 8 | 10 | 9 | 9 | ① |
乙 | 10 | 7 | 10 | 10 | 9 | 8 | ② | 9.5 |
(1)完成表中填空① ;② ;
(2)請計算甲六次測試成績的方差;
(3)若乙六次測試成績方差為,你認為推薦誰參加比賽更合適,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(2,-4)在正比例函數(shù)y=kx的圖象上。
(1)求k的值;
(2)若點(-1,m)在函數(shù)y=kx的圖象上,試求出m的值;
(3)若A(,y1),B(-2,y2),C(1,y3)都在此函數(shù)圖象上,試比較y1,y2,y3的大小。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】超速行駛是引發(fā)交通事故的主要原因.上周末,小鵬等三位同學(xué)在濱海大道紅樹林路段,嘗試用自己所學(xué)的知識檢測車速,觀測點設(shè)在到公路l的距離為100米的P處.這時,一輛富康轎車由西向東勻速駛來,測得此車從A處行駛到B處所用的時間為3秒,并測得∠APO=60°,∠BPO=45°,試判斷此車是否超過了每小時80千米的限制速度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線經(jīng)過點A(﹣3,0)、B(0,3),C(1,0).
(1)求拋物線及直線AB的函數(shù)關(guān)系式;
(2)有兩動點D、E同時從O出發(fā),以每秒1個單位長度的相同的速度分別沿線段OA、OB向A、B做勻速運動,過D作PD⊥OA分別交拋物線和直線AB于P、Q,設(shè)運動時間為t(0<t<3).
①求線段PQ的長度的最大值;
②連接PE,當(dāng)t為何值時,四邊形DOEP是正方形;
③連接DE,在運動過程中,是否存在這樣的t值,使PE=DE?若存在,請求出t的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com