【題目】如圖,在△ABC中,∠C90°,AB10,經過點C且與邊AB相切的動圓與CA、CB分別交于點D、E,則線段DE長度的最小值是_____

【答案】4.8

【解析】

DE的中點為F,圓FAB的切點為P,連接FP,連接CFCP,則有FPABFC+FPDE,由三角形的三邊關系知,CF+FPCP;只有當點FCP上時,FC+FPPC有最小值為CP的長,即當點F在直角三角形ABC的斜邊AB的高CP上時,DECP有最小值,由直角三角形的面積公式知,此時CPBCAC÷AB4.8

解:如圖,設DE的中點為F,圓FAB的切點為P,連接FP,連接CF,CP,則FPAB

AB10,,

AC8BC6

∵∠ACB90°,

FC+FPDE,

CF+FPCP,

當點F在直角三角形ABC的斜邊AB的高CP上時,PCDE有最小值,

DECP4.8

故答案為4.8

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】平面直角坐標系中,函數(shù)yx0)的圖象G經過點A4,1),與直線yx+b的圖象交于點B,與y軸交于點C.其中橫、縱坐標都是整數(shù)的點叫做整點.記圖象G在點AB之間的部分與線段OA、OCBC圍成的區(qū)域(不含邊界)為W.若W內恰有4個整點,結合函數(shù)圖象,b的取值范圍是( 。

A.b1bB.b1b

C.b<﹣1或﹣bD.b<﹣1b

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】目前我市“校園手機”現(xiàn)象越來越受到社會關注,針對這種現(xiàn)象,我市某中學九年級數(shù)學興趣小組的同學隨機調查了學校若干名家長對“中學生帶手機”現(xiàn)象的看法.統(tǒng)計整理并制作了如下的統(tǒng)計圖:

(1)這次調查的家長總數(shù)為__________,家長表示“不贊同”的人數(shù)為________________;

(2)從這次接受調查的家長中隨機抽查一個,恰好是“贊同”的家長的概率是____________;

(3)求圖②中表示家長“無所謂”的扇形圓心角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】請你用學習“一次函數(shù)”時積累的經驗和方法研究函數(shù)的圖象和性質,并解決問題.

完成下列步驟,畫出函數(shù)的圖象;

列表、填空;

x

0

1

2

3

y

3

______

1

______

1

2

3

描點:

連線

觀察圖象,當x______時,yx的增大而增大;

結合圖象,不等式的解集為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點在拋物線上,且該拋物線與軸分別交于點和點,與軸交于點

1)求拋物線的解析式及對稱軸;

2)若點是拋物線對稱軸上的一個動點,求的最小值;

3)點是是拋物線上除點外的一點,若的面積相等,求點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線yax2+bx+ca≠0)與y軸交于點C0,4),與x軸交于A(﹣2,0),點B4,0).

1)求拋物線的解析式;

2)若點M是拋物線上的一動點,且在直線BC的上方,當SMBC取得最大值時,求點M的坐標;

3)在直線的上方,拋物線是否存在點M,使四邊形ABMC的面積為15?若存在,求出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線經過點,與軸交于兩點

求拋物線的解析式;

如圖1,直線交拋物線兩點,為拋物線之間的動點,過點作軸于點于點,求的最大值;

如圖2,平移拋物線的頂點到原點得拋物線,直線交拋物線兩點,在拋物線上存在一個定點,使,求點的坐標

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠A=∠C=90°.

(1)用直尺和圓規(guī)作⊙O,使它經過A、B、D三點(保留作圖痕跡);

(2)C是否在⊙O上?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,AD4,AB2.點EAB的中點,點FBC邊上的任意一點(不與B、C重合),△EBF沿EF翻折,點B落在B'處,當DB'的長度最小時,BF的長度為________

查看答案和解析>>

同步練習冊答案