【題目】已知:如圖,AB是⊙O的直徑,AB=6,點C,D在⊙O上,且CD平分∠ACB,∠CAB=60°.
(1)求BC及陰影部分的面積;
(2)求CD的長.
【答案】
(1)解:∵AB是⊙O的直徑,
∴∠ACB=90°.
在Rt△ACB中,
∵∠CAB=60°,AB=6,
∴BC=ABsin∠CAB=6× =3 ,∠CBA=30°,
如圖1,連接OC,過點C作CE⊥x軸于點E,
在Rt△BCE中,CE=BCsin∠CBA=3 × ,
陰影部分的面積=S扇形OBC﹣S△OBC= ×π×9﹣ ×3=3π﹣ ;
(2)解:連接AD,
∵∠ABC=30°,
∴∠ADC=∠ABC=30°,
在△CAD中,AC=3,∠ACD=45°,
過點A作AF⊥CD于點F,在Rt△AFC中,AF=CF= ,
在Rt△AFD中,
∵DF= AF= ,
∴CD=CF+FD= + .
【解析】(1)求陰影弓形的面積用扇形的面積減去三角形的面積。
(2)根據(jù)同弦所對的圓周角相等,構(gòu)建有兩個特殊角的三角形。CD平分∠ACB,所以有∠ACD=45°,然后作AF⊥CD,知AC邊,求CD。
【考點精析】本題主要考查了圓周角定理和互余兩角的三角函數(shù)關(guān)系的相關(guān)知識點,需要掌握頂點在圓心上的角叫做圓心角;頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角;一條弧所對的圓周角等于它所對的圓心角的一半;互余關(guān)系:sinA=cos(90°—A),cosA=sin(90°—A),tanA=cot(90°—A),cotA=tan(90°—A)才能正確解答此題.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,已知△ABC,BF平分外角∠CBP,CF平分外角∠BCQ.試確定∠A和∠F的數(shù)量關(guān)系;
(2)如圖2,已知△ABC,BF和BD三等分外角∠CBP,CF和CE三等分外角∠BCQ.試確定∠A和∠F的數(shù)量關(guān)系;
(3)如圖3,已知△ABC,BF、BD和BM四等分外角∠CBP,CF、CE和CN四等分外角∠BCQ.試確定∠A和∠F的數(shù)量關(guān)系;
(4)如圖4,已知△ABC,將外角∠CBP進行n等分,BF是臨近BC邊的等分線,將外角∠BCQ進行n等分,CF是臨近BC邊的等分線,試確定∠A和∠F的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】居民區(qū)內(nèi)的“廣場舞”引起媒體關(guān)注,遼寧都市頻道為此進行過專訪報道.小平想了解本小區(qū)居民對“廣場舞”的看法,進行了一次抽樣調(diào)查,把居民對“廣場舞”的看法分為四個層次:A 非常贊同;B 贊同但要有時間限制;C 無所謂;D 不贊同.并將調(diào)查結(jié)果繪制了圖1和圖2兩幅不完整的統(tǒng)計圖.
請你根據(jù)圖中提供的信息解答下列問題:
(1)求本次被抽查的居民有多少人?
(2)將圖1和圖2補充完整;
(3)求圖2中“C”層次所在扇形的圓心角的度數(shù);
(4)估計該小區(qū)4000名居民中對“廣場舞”的看法表示贊同(包括A層次和B層次)的大約有多少人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩支儀仗隊各10名隊員的身高(單位:cm)如下表:
甲隊 | 179 | 177 | 178 | 177 | 178 | 178 | 179 | 179 | 177 | 178 |
乙隊 | 178 | 178 | 176 | 180 | 180 | 178 | 176 | 179 | 177 | 178 |
(1)甲隊隊員的平均身高為cm,乙隊隊員的平均身高為cm;
(2)請用你學(xué)過的統(tǒng)計知識判斷哪支儀仗隊的身高更為整齊呢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算
(1)﹣2+7﹣(﹣3)﹣2
(2)(﹣4)×5+(﹣120)÷6
(3)9(﹣12)+35.5×4﹣5.5×4
(4)﹣22
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P點是燈塔所在位置,輪船A位于燈塔南偏東40°方向,輪船B位于燈塔北偏東30°方向,輪船C位于燈塔北偏西70°方向,航線PE(射線)平分∠BPC.
(1)求∠APE的度數(shù);
(2)航線PE上的輪船D相對于燈塔P的方位是什么?
(以正北、正南方向為基準).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線l1:y=kx+b(k≠0)與x軸、y軸分別交于A、B兩點,與直線l2:y=3x交于點C,其中點C的坐標為(,c),點B的坐標為(0,3).
(1)求點C的坐標;
(2)求直線l1的表達式;
(3)在x軸上有一點D(3,0),求△BCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若關(guān)于x的一元二次方程(x-2)(x-3)=m有實數(shù)根x1 , x2 , 且x1 x2有下列結(jié)論:①x1=2,x2=3;②m> ;③二次函數(shù)y=(x-x1)(x-x2)+m的圖象與x軸交點的坐標為(2,0)和(3,0).其中正確的結(jié)論是(填正確結(jié)論的序號)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com