如圖,能否通過平移的方法由DABC得到DA¢B¢C¢?能否通過旋轉(zhuǎn)的方法由DABC得到DA¢B¢C¢?如果不行的話,說明通過什么方法,由DABC得到DA¢B¢C¢。

答案:
解析:

只通過平移不可能辦到,只通過旋轉(zhuǎn)也不可能由DABC得到DA¢B¢C¢。

應(yīng)先把DABCAC旋轉(zhuǎn)180°,再通過平移的辦法使ACA¢C¢重合,即由DABC得到DA¢B¢C¢。


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

19、如圖,關(guān)于直線l對稱的兩個圓的半徑都為1,等邊三角形ABC,LMN的頂點分別在兩圓上,AB⊥l,MN∥l,將l左側(cè)的圖形進行平移、旋轉(zhuǎn)或翻折變換(以下所述“變換”均值這3種變換之一),可以與l右側(cè)的圖形重合.
(1)通過兩次變換,不難實現(xiàn)上述重合的目的.例如,將l左側(cè)圖先繞圓心O1,按逆時針方向旋轉(zhuǎn)
30°
度,再沿l翻折,就可與右側(cè)的圖形重合;又如,將l左側(cè)圖形先向右平移2個單位,再繞圓心按順時針方向旋轉(zhuǎn)
30°
度,就與右側(cè)圖形重合;
(2)能否將l左側(cè)圖形只進行一次變換,就可使它與l右側(cè)圖形重合?如果能,請說明變換過程;如果不能,請你設(shè)計一種“將l左側(cè)圖形先沿著過點O1的某直線翻折,再向右適當(dāng)平移”(兩次變換)即可與右側(cè)圖形重合的方案.(畫出該直線并予以說明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:044

如圖,能否通過平移的方法由DABC得到DA¢B¢C¢?說明理由.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,關(guān)于直線l對稱的兩個圓的半徑都為1,等邊三角形ABC,LMN的頂點分別在兩圓上,AB⊥l,MN∥l,將l左側(cè)的圖形進行平移、旋轉(zhuǎn)或翻折變換(以下所述“變換”均值這3種變換之一),可以與l右側(cè)的圖形重合.
(1)通過兩次變換,不難實現(xiàn)上述重合的目的.例如,將l左側(cè)圖先繞圓心O1,按逆時針方向旋轉(zhuǎn)______度,再沿l翻折,就可與右側(cè)的圖形重合;又如,將l左側(cè)圖形先向右平移2個單位,再繞圓心按順時針方向旋轉(zhuǎn)______度,就與右側(cè)圖形重合;
(2)能否將l左側(cè)圖形只進行一次變換,就可使它與l右側(cè)圖形重合?如果能,請說明變換過程;如果不能,請你設(shè)計一種“將l左側(cè)圖形先沿著過點O1的某直線翻折,再向右適當(dāng)平移”(兩次變換)即可與右側(cè)圖形重合的方案.(畫出該直線并予以說明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,關(guān)于直線l對稱的兩個圓的半徑都為1,等邊三角形ABC,LMN的頂點分別在兩圓上,AB⊥l,MNl,將l左側(cè)的圖形進行平移、旋轉(zhuǎn)或翻折變換(以下所述“變換”均值這3種變換之一),可以與l右側(cè)的圖形重合.
(1)通過兩次變換,不難實現(xiàn)上述重合的目的.例如,將l左側(cè)圖先繞圓心O1,按逆時針方向旋轉(zhuǎn)______度,再沿l翻折,就可與右側(cè)的圖形重合;又如,將l左側(cè)圖形先向右平移2個單位,再繞圓心按順時針方向旋轉(zhuǎn)______度,就與右側(cè)圖形重合;
(2)能否將l左側(cè)圖形只進行一次變換,就可使它與l右側(cè)圖形重合?如果能,請說明變換過程;如果不能,請你設(shè)計一種“將l左側(cè)圖形先沿著過點O1的某直線翻折,再向右適當(dāng)平移”(兩次變換)即可與右側(cè)圖形重合的方案.(畫出該直線并予以說明)

精英家教網(wǎng)

查看答案和解析>>

同步練習(xí)冊答案