【題目】如圖,在△ABC中,∠B=∠C,AB=10 cm,BC=8 cm,D為AB的中點(diǎn),點(diǎn)P在線段上以3 cm/s的速度由點(diǎn)B向點(diǎn)C運(yùn)動,同時,點(diǎn)Q在線段CA上以相同速度由點(diǎn)C向點(diǎn)A運(yùn)動,一個點(diǎn)到達(dá)終點(diǎn)后另一個點(diǎn)也停止運(yùn)動.當(dāng)△BPD與△CQP全等時,求點(diǎn)P運(yùn)動的時間.
【答案】1s
【解析】
試題根據(jù)等邊對等角可得∠B=∠C,然后表示出BD、BP、PC、CQ,再根據(jù)全等三角形對應(yīng)邊相等,分①BD、PC是對應(yīng)邊,②BD與CQ是對應(yīng)邊兩種情況討論求解即可.
試題解析:
∵AB=AC,
∴∠B=∠C,
設(shè)點(diǎn)P、Q的運(yùn)動時間為t,則BP=3t,CQ=3t,
∵AB=10cm,BC=8cm,點(diǎn)D為AB的中點(diǎn),
∴BD=×10=5cm,
PC=(8-3t)cm,
①BD、PC是對應(yīng)邊時,∵△BPD與△CQP全等,
∴BD=PC,BP=CQ,
∴5=8-3t且3t=3t,
解得t=1,
②BD與CQ是對應(yīng)邊時,∵△BPD與△CQP全等,
∴BD=CQ,BP=PC,
∴5=3t,3t=8-3t,
解得t=且t=(舍去),
綜上所述,△BPD與△CQP全等時,點(diǎn)P運(yùn)動的時間為1秒.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在△ABC中,∠BAC的平分線AD交BC于點(diǎn)D,DE垂直平分AC,垂足為點(diǎn)E,∠BAD=29°,求∠B的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校計劃購買一批籃球和足球,已知購買2個籃球和1個足球共需320元,購買3個籃球和2個足球共需540元.
(1)求每個籃球和每個足球的售價;
(2)如果學(xué)校計劃購買這兩種球共50個,總費(fèi)用不超過5500元,那么最多可購買多少個足球?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將矩形ABCD沿AH折疊,使得頂點(diǎn)B落在CD邊上的P點(diǎn)處.折痕與邊BC交于點(diǎn) H,已知AD=8,HC:HB=3:5.
(1)求證:△HCP∽△PDA;
(2)探究AB與HB之間的數(shù)量關(guān)系,并證明你的結(jié)論;
(3)連結(jié)BP,動點(diǎn)M在線段AP上(點(diǎn)M與點(diǎn)P、A不重合),動點(diǎn)N在線段AB的延長線上,且BN=PM,連結(jié)MN交PB于點(diǎn)F,作ME⊥BP于點(diǎn)E.試問當(dāng)點(diǎn)M、N在移動過程中,線段EF的長度是否發(fā)生變化?若變化,說明理由;說明理由;若不變,求出線段EF的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在﹣1、3、﹣2這三個數(shù)中,任選兩個數(shù)的積作為k的值,使反比例函數(shù) 的圖象在第一、三象限的概率是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小彬和小明每天早晨堅持跑步,小彬每秒跑4米,小明每秒跑6米.
(1)如果他們站在百米跑道的兩端同時相向起跑,那么幾秒后兩人相遇?
(2)如果小明站在百米跑道的起點(diǎn)處,小彬站在他前面10米處,兩人同時同向起跑,幾秒后小明能追上小彬?
(2)如果他們都站在四百米環(huán)形跑道的起點(diǎn)處,兩人同時同向起跑,幾分鐘后他們再次相遇?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工廠現(xiàn)有甲種原料360千克,乙種原料290千克,計劃利用這兩種原料生產(chǎn)A、B兩種產(chǎn)品共50件.已知生產(chǎn)一件A種產(chǎn)品需用甲種原料9千克、乙種原料3千克,可獲利潤700元;生產(chǎn)一件B種產(chǎn)品需用甲種原料4千克、乙種原料10千克,可獲利潤1200元。設(shè)生產(chǎn)A種產(chǎn)品的生產(chǎn)件數(shù)為x, A、B兩種產(chǎn)品所獲總利潤為y (元)
(1)試寫出y與x之間的函數(shù)關(guān)系式;
(2)求出自變量x的取值范圍;
(3)利用函數(shù)的性質(zhì)說明哪種生產(chǎn)方案獲總利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形ABCD是正方形,AC與BD,相交于點(diǎn)O,點(diǎn)E、F是直線AD上兩動點(diǎn),且AE=DF,CF所在直線與對角線BD所在直線交于點(diǎn)G,連接AG,直線AG交BE于點(diǎn)H.
(1)如圖1,當(dāng)點(diǎn)E、F在線段AD上時,求證:∠DAG=∠DCG;
(2)如圖1,猜想AG與BE的位置關(guān)系,并加以證明;
(3)如圖2,在(2)條件下,連接HO,試說明HO平分∠BHG.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com