【題目】已知等邊△ABC中,在射線BA上有一點(diǎn)D,連接CD,并以CD為邊向上作等邊△CDE,連接BE和AE.試判斷下列結(jié)論:①AE=BD; ②AE與AB所夾銳夾角為60°;③當(dāng)D在線段AB或BA延長(zhǎng)線上時(shí),總有∠BDE-∠AED=2∠BDC;④∠BCD=90°時(shí),CE2+AD2=AC2+DE2 .正確的序號(hào)有( )
A. ①② B. ①②③ C. ①②④ D. ①②③④
【答案】C
【解析】
由∠BCD=∠ACD+60°,∠ACE=∠ACD+60°可得∠BCD=∠ACE,利用SAS可證明△BCD≌△ACE,可得AE=BD,①正確;∠CBD=∠CAE=60°,進(jìn)而可得∠EAD=60°,②正確,當(dāng)∠BCD=90°時(shí),可得∠ACD=∠ADC=30°,可得AD=AC,即可得CE2+AD2=AC2+DE2 ,④正確;當(dāng)D點(diǎn)在BA延長(zhǎng)線上時(shí),∠BDE-∠BDC=60°,根據(jù)△BCD≌△ACE可得∠AEC=∠BDC,進(jìn)而可得∠BDC+∠AED=∠AEC+∠AED=∠CED=60°,即可證明∠BDE-∠BDC=∠BDC+∠AED,即∠BDE-∠AED=2∠BDC,當(dāng)點(diǎn)D在AB上時(shí)可證明∠BDE-∠AED=120°,③錯(cuò)誤,綜上即可得答案.
∵∠BCA=∠DCE=60°,
∴∠BCA+∠ACD=∠DCE+∠ACD,
∴∠BCD=∠ACE,
又∵AC=BC,CE=CD,
∴△BCD≌△ACE,
∴AE=BD,∠CBA=∠CAE=60°,∠AEC=∠BDC,①正確,
∴∠BAE=120°,
∴∠EAD=60°,②正確,
∵∠BCD=90°,∠BCA=60°,
∴∠ACD=∠ADC=30°,
∴AC=AD,
∵CE=DE,
∴CE2+AD2=AC2+DE2,④正確,
當(dāng)D點(diǎn)在BA延長(zhǎng)線上時(shí),∠BDE-∠BDC=60°,
∵∠AEC=∠BDC,
∴∠BDC+∠AED=∠AEC+∠AED=∠CED=60°,
∴∠BDE-∠BDC=∠BDC+∠AED
∴∠BDE-∠AED=2∠BDC,
如圖,當(dāng)點(diǎn)D在AB上時(shí),
∵△BCD≌△∠ACE,
∴∠CAE=∠CBD=60°,
∴∠DAE=∠BAC+∠CAE=120°,
∴∠BDE-∠AED=∠DAE=120°,③錯(cuò)誤
故正確的結(jié)論有①②④,
故選C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】七年級(jí)(1)班的宣傳委員在辦黑板報(bào)時(shí),采用了下面的圖案作為邊框,其中每個(gè)黑色六邊形與6個(gè)自色六邊形相鄰,若一段邊框上有25個(gè)黑色六邊形,則這段邊框共有白色六邊形
A. 100個(gè) B. 102個(gè) C. 98個(gè) D. 150個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了解九年級(jí)學(xué)生體育測(cè)試情況,以九年級(jí)(1)班學(xué)生的體育測(cè)試成績(jī)?yōu)闃颖,按A,B,C,D四個(gè)等級(jí)進(jìn)行統(tǒng)計(jì),并將統(tǒng)計(jì)結(jié)果繪制成如下的統(tǒng)計(jì)圖,請(qǐng)你結(jié)合圖中所給信息解答下列問題:
(說(shuō)明:A級(jí):90分~100分;B級(jí):75分~89分;C級(jí):60分~74分;D級(jí):60分以下)
(1)請(qǐng)把條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)樣本中D級(jí)的學(xué)生人數(shù)占全班學(xué)生人數(shù)的百分比是;
(3)扇形統(tǒng)計(jì)圖中A級(jí)所在的扇形的圓心角度數(shù)是;
(4)若該校九年級(jí)有600名學(xué)生,請(qǐng)樣本估計(jì)體育測(cè)試中A級(jí)學(xué)生人數(shù)約為 人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩組工人同時(shí)加工某種零件,乙組工作中有一次停產(chǎn)更換設(shè)備,更換設(shè)備
后,乙組的工作效率是原來(lái)的2倍.兩組各自加工零件的數(shù)量(件)與時(shí)間(時(shí))的函數(shù)圖
象如圖所示.
(1)求甲組加工零件的數(shù)量y與時(shí)間之間的函數(shù)關(guān)系式.(2分)
(2)求乙組加工零件總量的值.(3分)
(3)甲、乙兩組加工出的零件合在一起裝箱,每夠300件裝一箱,零件裝箱的時(shí)間忽略不計(jì),求經(jīng)過多長(zhǎng)時(shí)間恰好裝滿第1箱?再經(jīng)過多長(zhǎng)時(shí)間恰好裝滿第2箱?(5分)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某工廠有甲、乙兩個(gè)大小相同的蓄水池,且中間有管道連通,現(xiàn)要向甲池中注水,若單位時(shí)間內(nèi)的注水量不變,那么從注水開始,乙水池水面上升的高度h與注水時(shí)間t之間的函數(shù)關(guān)系圖象可能是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)為4的正方形ABCD中,E、F是AD邊上的兩個(gè)動(dòng)點(diǎn),且AE=FD,連接BE、CF、BD,CF與BD交于點(diǎn)G,連接AG交BE于點(diǎn)H,連接DH,下列結(jié)論正確的個(gè)數(shù)是( )
①△ABG∽△FDG ②HD平分∠EHG ③AG⊥BE ④S△HDG:S△HBG=tan∠DAG ⑤線段DH的最小值是2 ﹣2.
A.2
B.3
C.4
D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】章太炎先生有一句話:“夫國(guó)學(xué)者,國(guó)家所以成立之源泉也.“為了激發(fā)學(xué)生學(xué)習(xí)國(guó)學(xué)經(jīng)典的熱情,弘揚(yáng)文明風(fēng)尚,武侯區(qū)某學(xué)校以“書香飄溢校園國(guó)學(xué)浸潤(rùn)心靈“為主題,開展國(guó)學(xué)經(jīng)典系列比賽項(xiàng)目:A讀經(jīng)典,B寫經(jīng)典,C唱經(jīng)典,D演經(jīng)典,為了解學(xué)生對(duì)這四個(gè)項(xiàng)目的報(bào)名參賽情況(每名學(xué)生選報(bào)一個(gè)項(xiàng)目),學(xué)校隨機(jī)抽取了部分學(xué)生進(jìn)行“你選擇參加哪一項(xiàng)經(jīng)典比賽活動(dòng)”的調(diào)查,并將調(diào)查結(jié)果繪制成了如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中的信息解答下列問題.
(1)填空:在條形統(tǒng)計(jì)圖中,m=______,n=______;
(2)求在扇形統(tǒng)計(jì)圖中,“C“項(xiàng)目所在扇形的圓心角的度數(shù);
(3)若該學(xué)校共有學(xué)生2400名,請(qǐng)根據(jù)抽樣調(diào)查的結(jié)果,估計(jì)學(xué)校將有多少人參加“D“項(xiàng)目比賽活動(dòng)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:在數(shù)軸上A點(diǎn)表示數(shù)a,B點(diǎn)示數(shù)b,C點(diǎn)表示數(shù)c,b是最小的正整數(shù),且a、c滿足|a+2|+(c-7)2=0.
(1)a=______,b=______,c=______;
(2)若將數(shù)軸折疊,使得A點(diǎn)與C點(diǎn)重合,則點(diǎn)B與數(shù)______表示的點(diǎn)重合;
(3)點(diǎn)A、B、C開始在數(shù)軸上運(yùn)動(dòng),若點(diǎn)A以每秒1個(gè)單位長(zhǎng)度的速度向左運(yùn)動(dòng),同時(shí),點(diǎn)B和點(diǎn)C分別以每秒2個(gè)單位長(zhǎng)度和4個(gè)單位長(zhǎng)度的速度向右運(yùn)動(dòng),假設(shè)t秒鐘過后,若點(diǎn)A與點(diǎn)B之間的距離表示為AB,點(diǎn)A與點(diǎn)C之間的距離表示為AC,點(diǎn)B與點(diǎn)C之間的距離表示為BC.則AB=______,AC=______,BC=______.(用含t的代數(shù)式表示).
(4)直接寫出點(diǎn)B為AC中點(diǎn)時(shí)的t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市文化宮學(xué)習(xí)十九大有關(guān)優(yōu)先發(fā)展教育的精神,舉辦了為某貧困山區(qū)小學(xué)捐贈(zèng)書包活動(dòng).首次用2000元在商店購(gòu)進(jìn)一批學(xué)生書包,活動(dòng)進(jìn)行后發(fā)現(xiàn)書包數(shù)量不夠,又購(gòu)進(jìn)第二批同樣的書包,所購(gòu)數(shù)量是第一批數(shù)量的3倍,但單價(jià)貴了4元,結(jié)果第二批用了6300元.
(1)求文化官第一批購(gòu)進(jìn)書包的單價(jià)是多少?
(2)商店兩批書包每個(gè)的進(jìn)價(jià)分別是68元和70元,這兩批書包全部售給文化宮后,商店共盈利多少元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com