【題目】如圖,△ABC中,ABAC,點(diǎn)DBA的延長(zhǎng)線上,點(diǎn)EBC上,DEDC,點(diǎn)FDEAC的交點(diǎn).

1)求證:∠BDE∠ACD

2)若DE2DF,過點(diǎn)EEG∥ACAB于點(diǎn)G,求證:AB2AG

3)將點(diǎn)DBA的延長(zhǎng)線上,點(diǎn)EBC改為點(diǎn)DAB上,點(diǎn)ECB的延長(zhǎng)線上點(diǎn)FDEAC的交點(diǎn)改為點(diǎn)FED的延長(zhǎng)線與AC的交點(diǎn),其它條件不變,如圖.

求證:

DE4DF,請(qǐng)直接寫出SABC∶SDEC的值.

【答案】1)見解析; 2)見解析; 3)① 見解析;② .

【解析】

1)運(yùn)用等腰三角形的性質(zhì)及三角形的外角性質(zhì)就可解決問題;

2)過點(diǎn)EEGAC,交AB于點(diǎn)G,如圖1,證明DCA≌△EDG,可得DAEG CADG,再由DFEF,得到DAAGBG;

3)①過點(diǎn)EEGAC,交AB的延長(zhǎng)線于點(diǎn)G,如圖2,證明DCA≌△EDG,可得AD=GE,由ACEGABCGBE,BG=GE,根據(jù)相似三角形對(duì)應(yīng)邊成比例列式可得結(jié)果;②作AH垂直BCH,作DMCEM,由ADFCDEAD= GE= BG可得,由ABCGBE可得,根據(jù)三角形面積公式列出比例式化簡(jiǎn)即可.

解:(1)證明:∵ABAC,DCDE,

∴∠ABC=∠ACB,∠DEC=∠DCE

∴∠BDE=∠DECDBC=∠DCEACB=∠ACD

2)過點(diǎn)EEGAC,交AB于點(diǎn)G,如圖1,

則有∠DAC=∠DGE

DCAEDG中,

DCA=∠GDE,

DAC=∠DGE

DCDE,

∴△DCA≌△EDGAAS).

DAEG,CADG,

DGAB

DABG

AFEGDFEF,

DAAG

AGBG

AB2AG

3)①過點(diǎn)EEGAC,交AB的延長(zhǎng)線于點(diǎn)G,如圖2,

ABACDCDE,

∴∠ABC=∠ACB,∠DEC=∠DCE

∴∠BDE=∠DBCDEC=∠ACBDCE=∠DCA

ACEG

∴∠DAC=∠DGE

DCAEDG中,

,

∴△DCA≌△EDGAAS),

AD=GE,

ACEG,

∴△ABC∽△GBEAB=AC,

BG=GE

,

即:

②∵ACEG,

∴△ADF∽△CDE

,

AD= GE= BG

,

AH垂直BCH,作DMCEM,如圖2

AHDM,

又∵△ABC∽△GBE,

,

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,點(diǎn)PBC上.

(1)求作:△PCD,使點(diǎn)DAC上,且△PCD∽△ABP;(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法)

(2)(1)的條件下,若∠APC=2∠ABC,求證:PD//AB

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某中心廣場(chǎng)燈柱AB被鋼纜CD固定,已知CB=5米,且sin∠DCB

1)求鋼纜CD的長(zhǎng)度。

2)若AD=2米,燈的頂端E距離A1.6米,且∠EAB=120°,則燈的頂端E距離地面多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市某特產(chǎn)專賣店銷售一種蜜棗,每千克的進(jìn)價(jià)為10元,銷售過程中發(fā)現(xiàn),每天銷量與銷售單價(jià)x(元)之間關(guān)系可以近似地看作一次函數(shù).(利潤=售價(jià)-進(jìn)價(jià))

1)寫出每天的利潤w(元)與銷售單價(jià)x(元)之間函數(shù)解析式;

2)當(dāng)銷售單價(jià)定為多少元時(shí),這種蜜棗每天能夠獲得最大利潤?最大利潤是多少元?

3)物價(jià)部門規(guī)定,這種蜜棗的銷售單價(jià)不得高于30元.若商店想要這種蜜棗每天獲得300元的利潤,則銷售單價(jià)應(yīng)定為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線lx軸交于點(diǎn)B1,以OB1為邊長(zhǎng)作等邊△A1OB1,過點(diǎn)A1A1B2平行于x軸,交直線l于點(diǎn)B2,以A1B2為邊長(zhǎng)作等邊△A2A1B2,過點(diǎn)A2A2B3平行于x軸,交直線l于點(diǎn)B3,以A2B3為邊長(zhǎng)作等邊△A3A2B3,…,則點(diǎn)A2 018的橫坐標(biāo)是_____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠ACB=90°,點(diǎn)D、E分別在AC、BC上,且∠CDE=B,將CDE沿DE折疊,點(diǎn)C恰好落在AB邊上的點(diǎn)F處,若AC=12,AB=13,則CD的長(zhǎng)為_________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2019年3月25日是第二十四個(gè)“全國中小學(xué)生安全教育日”,某校為加強(qiáng)學(xué)生的安全意識(shí),以“防火、防溺水、防食物中毒、防校園欺凌”為主題組織了全校學(xué)生參加安全知識(shí)競(jìng)賽,從中抽取了部分學(xué)生成績(jī)(得分為正整數(shù),滿分為100分)進(jìn)行統(tǒng)計(jì),繪制了兩幅不完整的統(tǒng)計(jì)圖,如圖所示.

(1)學(xué)校共抽取了______名學(xué)生,_____,n=______.

(2)補(bǔ)全頻數(shù)直方圖;

(3)該校共有2000名學(xué)生。若成績(jī)?cè)?0分以下(含70分)的學(xué)生安全意識(shí)不強(qiáng),有待進(jìn)一步加強(qiáng)安全教育,則該校安全意識(shí)不強(qiáng)的學(xué)生約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】劉老師在一節(jié)習(xí)題課上出示了下面一張幻燈片

解分式方程的基本思想是“____________”,把分式方程變?yōu)檎椒匠糖蠼猓夥质椒匠桃欢ㄗ⒁庖?/span>__________

小明同學(xué)的作業(yè)如下:

解:去分母得, (第一部)

移項(xiàng),合并同類項(xiàng)得 (第二步)

經(jīng)檢驗(yàn)時(shí), (第三步)

所以原分式方程的解為 (第四步)

解分式方程的基本思想是“____________”,把分式方程變?yōu)檎椒匠糖蠼猓夥质椒匠桃欢ㄗ⒁庖?/span>__________

小明同學(xué)的作業(yè)如下:

解:去分母得, (第一部)

移項(xiàng),合并同類項(xiàng)得 (第二步)

經(jīng)檢驗(yàn)時(shí), (第三步)

所以原分式方程的解為 (第四步)

(1)請(qǐng)將幻燈片中的劃線部分填上(溫馨提示有2個(gè)空呦!)

(2)小明解答過程是從第_______步開始出錯(cuò)的,其錯(cuò)誤原因是______________

(3)請(qǐng)你寫出此題正確的解答過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A,B在反比例函數(shù)的圖象上,點(diǎn)C,D在反比例函數(shù)的圖象上,AC//BD//y軸,已知點(diǎn)A,B的橫坐標(biāo)分別為1,2,OACABD的面積之和為,則的值為( )

A. 3 B. 4 C. 2 D.

查看答案和解析>>

同步練習(xí)冊(cè)答案