【題目】在△ABC中,∠C=90°,AC=4,BC=3,如圖1,四邊形DEFG為△ABC的內(nèi)接正方形,則正方形DEFG的邊長(zhǎng)為_____.如圖2,若三角形ABC內(nèi)有并排的n個(gè)全等的正方形,它們組成的矩形內(nèi)接于△ABC,則正方形的邊長(zhǎng)為_____.
【答案】;
【解析】
(1)根據(jù)題意畫出圖形,作CN⊥AB,再根據(jù)GF∥AB,可知△CGF∽△CAB,由相似三角形的性質(zhì)即可求出正方形的邊長(zhǎng);
(2)①作CN⊥AB,交GF于點(diǎn)M,交AB于點(diǎn)N,同(1)可知,△CGF∽△CAB,根據(jù)對(duì)應(yīng)邊的比等于相似比可求出正方形的邊長(zhǎng);
②方法與①類似;③作CN⊥AB,交GF于點(diǎn)M,交AB于點(diǎn)N,同(1)可知,△CGF∽△CAB,根據(jù)對(duì)應(yīng)邊的比等于相似比可求出正方形的邊長(zhǎng);
解:(1)在圖1中,作CN⊥AB,交GF于點(diǎn)M,交AB于點(diǎn)N.
在Rt△ABC中,
∵AC=4,BC=3,∴AB=5,
∴ABCN=BCAC,∴CN=,
∵GF∥AB, ∴△CGF∽△CAB,
∴CM:CN=GF:AB,
設(shè)正方形邊長(zhǎng)為x,
則 ∴x= ;
故答案為:
(2)①在圖2中,作CN⊥AB,交GF于點(diǎn)M,交AB于點(diǎn)N.
∵GF∥AB, ∴△CGF∽△CAB,
∴CM:CN=GF:AB,
設(shè)每個(gè)正方形邊長(zhǎng)為x,則
∴x=.
②類比①,在圖3中,
∵△CGF∽△CAB,
∴CM:CN=GF:AB,
設(shè)每個(gè)正方形邊長(zhǎng)為x,則
∴x=.
③在圖4中,過(guò)點(diǎn)C作CN⊥AB,垂足為N,交GF于點(diǎn)M,
∵△CGF∽△CAB,
∴CM:CN=GF:AB,
設(shè)每個(gè)正方形邊長(zhǎng)為x,則,
∴=.
故答案為:
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,,,.點(diǎn)從開(kāi)始沿邊向點(diǎn)以的速度移動(dòng),與此同時(shí),點(diǎn)從點(diǎn)開(kāi)始沿邊向點(diǎn)以的速度移動(dòng).如果、分別從、同時(shí)出發(fā),當(dāng)點(diǎn)運(yùn)動(dòng)到點(diǎn)時(shí),兩點(diǎn)停止運(yùn)動(dòng),問(wèn):
經(jīng)過(guò)幾秒,的面積等于?
(2)的面積會(huì)等于嗎?若會(huì),請(qǐng)求出此時(shí)的運(yùn)動(dòng)時(shí)間;若不會(huì),請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,點(diǎn)在邊上,,點(diǎn)在邊上,,點(diǎn)為上一點(diǎn),,若,,則的長(zhǎng)為___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某班“數(shù)學(xué)興趣小組”對(duì)函數(shù),的圖象和性質(zhì)進(jìn)行了探究過(guò)程如下,請(qǐng)補(bǔ)充完成:
(1)函數(shù)的自變量的取值范圍是__________________;
(2)下表是與的幾組對(duì)應(yīng)值.請(qǐng)直接寫出,的值:______________;________.
… | 0 | 2 | 3 | 4 | … | |||||||
… |
| -3 | 5 | 3 | … |
(3)如圖,在平面直角坐標(biāo)系中,描出了以上表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn),根據(jù)描出的點(diǎn),畫出該函數(shù)的圖象;
(4)通過(guò)觀察函數(shù)的圖象,小明發(fā)現(xiàn)該函數(shù)圖象與反比例函數(shù)的圖象形狀相同,是中心對(duì)稱圖形,且點(diǎn)和是一組對(duì)稱點(diǎn),則其對(duì)稱中心的坐標(biāo)為________.
(5)請(qǐng)寫出一條該函數(shù)的性質(zhì):___________________.
(6)當(dāng)時(shí),關(guān)于的方程有實(shí)數(shù)解,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)是平行四邊形的邊的中點(diǎn),是對(duì)角線,交的延長(zhǎng)線于,連接交于點(diǎn).
(1)如圖1,求證:;
(2)如圖2,當(dāng)四邊形是矩形時(shí),請(qǐng)你確定四邊形的形狀并說(shuō)明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線y=ax2﹣2ax﹣3a圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于C點(diǎn),頂點(diǎn)M的縱坐標(biāo)為4,直線MD⊥x軸于點(diǎn)D.
(1)求拋物線的解析式;
(2)如圖1,N為線段MD上一個(gè)動(dòng)點(diǎn),以N為等腰三角形頂角頂點(diǎn),NA為腰構(gòu)造等腰△NAG,且G點(diǎn)落在直線CM上.若在直線CM上滿足條件的G點(diǎn)有且只有一個(gè)時(shí),請(qǐng)直接寫出點(diǎn)N的坐標(biāo).
(3)如圖,點(diǎn)P為第一象限內(nèi)拋物線上的一點(diǎn),點(diǎn)Q為第四象限內(nèi)拋物線上一點(diǎn),點(diǎn)Q的橫坐標(biāo)比點(diǎn)P的橫坐標(biāo)大1,連接PC、AQ.當(dāng)PC=AQ時(shí),求S△PCQ的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市少年宮為小學(xué)生開(kāi)設(shè)了繪畫、音樂(lè)、舞蹈和跆拳道四類興趣班,為了解學(xué)生對(duì)這四類興趣班的喜愛(ài)情況,對(duì)學(xué)生進(jìn)行了隨機(jī)問(wèn)卷調(diào)查(問(wèn)卷調(diào)查表如圖所示),將調(diào)查結(jié)果整理后繪制了一幅不完整的統(tǒng)計(jì)表
興趣班 | 頻數(shù) | 頻率 |
A | 0.35 | |
B | 18 | 0.30 |
C | 15 | |
D | 6 | |
合計(jì) | 1 |
請(qǐng)你根據(jù)統(tǒng)計(jì)表中提供的信息回答下列問(wèn)題:
(1)統(tǒng)計(jì)表中的 , ;
(2)根據(jù)調(diào)查結(jié)果,請(qǐng)你估計(jì)該市2000名小學(xué)生中最喜歡“繪畫”興趣的人數(shù);
(3)王姝和李要選擇參加興趣班,若他們每人從、、、四類興趣班中隨機(jī)選取一類,請(qǐng)用畫樹狀圖或列表格的方法,求兩人恰好選中同一類的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】青青草原上,灰太狼每天都想著如何抓羊,而且是屢敗屢試,永不言棄.(如圖所示)一天,灰太狼在自家城堡頂部A處測(cè)得懶羊羊所在地B處的俯角為60°,然后下到城堡的C處,測(cè)得B處的俯角為30°.已知AC=50米,若灰太狼以5米/秒的速度從城堡底部D處出發(fā),幾秒鐘后能抓到懶羊羊?(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD內(nèi)一點(diǎn)E滿足EB=EC,EA=ED,∠BEC=∠AED=90°,AC交DE于點(diǎn)F,交BD于點(diǎn)G.
(1)∠AGB的度數(shù)為
(2)若四邊形AECD是平行四邊形
①求證:AC=AB
②若AE=2,求AF·CG的值
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com