【題目】如圖,∠ABC、ACB的平分線相交于點F,過點FDEBC,ABD,交ACE,那么下列結(jié)論:①△BDF、CEF都是等腰三角形;②DE=BD+CE;③△ADE的周長為AB+AC;BD=CE.正確的是( )

A. ③④ B. ①②③ C. ①② D. ②③④

【答案】B

【解析】由平行線得到角相等,由角平分線得角相等,根據(jù)平行線的性質(zhì)及等腰三角形的判定和性質(zhì).

解答:解:∵DE∥BC,

∴∠DFB=∠FBC,∠EFC=∠FCB,

∵BF∠ABC的平分線,CF∠ACB的平分線,

∴∠FBC=∠DFB∠FCE=∠FCB,

∵∠DBF=∠DFB∠EFC=∠ECF,

∴△DFB,△FEC都是等腰三角形.

∴DF=DBFE=EC,即有DE=DF+FE=DB+EC,

∴△ADE的周長AD+AE+DE=AD+AE+DB+EC=AB+AC

故選C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=3,BC=5,點P是BC邊上的一個動點(點P與點B、C都不重合),現(xiàn)將△PCD沿直線PD折疊,使點C落到點F處;過點P作∠BPF的角平分線交AB于點E.設(shè)BP=x,BE=y,則下列圖象中,能表示y與x的函數(shù)關(guān)系的圖象大致是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在菱形ABCD中,∠A=30°,在同一平面內(nèi),以對角線BD為底邊作頂角為120°的等腰三角形BDE,則∠EBC的度數(shù)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知矩形ABCD與矩形EFGO在平面直角坐標(biāo)系中,點B的坐標(biāo)為(﹣4,4),點F的坐標(biāo)為(2,1),若矩形ABCD和矩形EFGO是位似圖形,點P(點P在線段GC上)是位似中心,則點P的坐標(biāo)為(

A.(0,3)
B.(0,2.5)
C.(0,2)
D.(0,1.5)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】按要求完成下列各小題
(1)計算2sin260°+ sin30°cos30°;
(2)請你畫出如圖所示的幾何體的三視圖.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB=A1B,在AA1的延長線上依次取A2、A3A4、、An,并依次在三角形的外部作等腰三角形,使A1C1=A1A2,A2C2=A2A3,A3C3=A3A4,An1Cn1=An1An.

記∠BA1A=∠1,∠C1A2A1=∠2,……,以此類推. 若∠B=30°,則∠n=_________°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】△ABC中,AB=AC,D是線段BC的延長線上一點,以AD為一邊在AD的右側(cè)作△ADE,使AE=AD,∠DAE=∠BAC,連接CE.

(1)如圖,點D在線段BC的延長線上移動,若∠BAC=40,求∠DCE的度數(shù)

(2)設(shè)∠BAC=m,∠DCE=n.

如圖,當(dāng)點D在線段BC的延長線上移動時,mn之間有什么數(shù)量關(guān)系?請說明理由.

當(dāng)點D在直線BC上(不與B、C重合)移動時,mn之間有什么數(shù)量關(guān)系?請直接寫出你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】3分)在同一平面直角坐標(biāo)系中,函數(shù)y=ax2+bxy=bx+a的圖象可能是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為參加學(xué)校的“我愛古詩詞”知識競賽,小王所在班級組織了一次古詩詞知識測試,并將全班同學(xué)的分?jǐn)?shù)(得分取正整數(shù),滿分為100分)進(jìn)行統(tǒng)計.以下是根據(jù)這次測試成績制作的不完整的頻率分布表和頻率分布直方圖.

組別

分組

頻數(shù)

頻率

1

50≤x<60

9

0.18

2

60≤x<70

a

3

70≤x<80

20

0.40

4

80≤x<90

0.08

5

90≤x≤100

2

b

合計

請根據(jù)以上頻率分布表和頻率分布直方圖,回答下列問題:

(1)求出a、b、x、y的值;
(2)老師說:“小王的測試成績是全班同學(xué)成績的中位數(shù)”,那么小王的測試成績在什么范圍內(nèi)?
(3)若要從小明、小敏等五位成績優(yōu)秀的同學(xué)中隨機(jī)選取兩位參加競賽,請用“列表法”或“樹狀圖”求出小明、小敏同時被選中的概率.(注:五位同學(xué)請用A、B、C、D、E表示,其中小明為A,小敏為B)

查看答案和解析>>

同步練習(xí)冊答案