【題目】如圖,某日的錢塘江觀潮信息如表:

按上述信息,小紅將交叉潮形成后潮頭與乙地之間的距離(千米)與時間(分鐘)的函數(shù)關(guān)系用圖3表示,其中:11:40時甲地交叉潮的潮頭離乙地12千米記為點,點坐標(biāo)為,曲線可用二次函數(shù),是常數(shù))刻畫.

(1)求的值,并求出潮頭從甲地到乙地的速度;

(2)11:59時,小紅騎單車從乙地出發(fā),沿江邊公路以千米/分的速度往甲地方向去看潮,問她幾分鐘后與潮頭相遇?

(3)相遇后,小紅立即調(diào)轉(zhuǎn)車頭,沿江邊公路按潮頭速度與潮頭并行,但潮頭過乙地后均勻加速,而單車最高速度為千米/分,小紅逐漸落后,問小紅與潮頭相遇到落后潮頭1.8千米共需多長時間?(潮水加速階段速度,是加速前的速度).

【答案】(1)m=30;0.4千米/分鐘;(2)5分鐘;(3)小紅與潮頭相遇到潮頭離她1.8千米外共需要26分鐘.

【解析】

試題分析:(1)由題意可知:經(jīng)過30分鐘后到達(dá)乙地,從而可知m=30,由于甲地到乙地是勻速運動,所以利用路程除以時間即可求出速度;

(2)由于潮頭的速度為0.4千米/分鐘,所以到11:59時,潮頭已前進(jìn)19×0.4=7.6千米,設(shè)小紅出發(fā)x分鐘,根據(jù)題意列出方程即可求出x的值,

(3)先求出s的解析式,根據(jù)潮水加速階段的關(guān)系式,求出潮頭的速度達(dá)到單車最高速度0.48千米/分鐘時所對應(yīng)的時間t,從而可知潮頭與乙地之間的距離s,設(shè)她離乙地的距離為s1,則s1與時間t的函數(shù)關(guān)系式為s1=0.48t+h(t≥35),當(dāng)t=35時,s1=s= ,從而可求出h的值,最后潮頭與小紅相距1.8千米時,即s-s1=1.8,從而可求出t的值,由于小紅與潮頭相遇后,按潮頭速度與潮頭并行到達(dá)乙地用時6分鐘,共需要時間為6+50-30=26分鐘,

試題解析:(1)由題意可知:m=30;

∴B(30,0),

潮頭從甲地到乙地的速度為:=0.4千米/分鐘;

(2)∵潮頭的速度為0.4千米/分鐘,

∴到11:59時,潮頭已前進(jìn)19×0.4=7.6千米,

設(shè)小紅出發(fā)x分鐘與潮頭相遇,

∴0.4x+0.48x=12-7.6,

∴x=5

∴小紅5分鐘與潮頭相遇,

(3)把(30,0),C(55,15)代入s=t2+bt+c,

解得:b=-,c=-,

∴s=t2-t-

∵v0=0.4,

∴v=(t-30)+

當(dāng)潮頭的速度達(dá)到單車最高速度0.48千米/分鐘,

此時v=0.48,

∴0.48=(t-30)+,

∴t=35,

當(dāng)t=35時,

s=t2-t-=,

∴從t=35分(12:15時)開始,潮頭快于小紅速度奔向丙地,小紅逐漸落后,當(dāng)小紅仍以0.48千米/分的速度勻速追趕潮頭.

設(shè)她離乙地的距離為s1,則s1與時間t的函數(shù)關(guān)系式為s1=0.48t+h(t≥35),

當(dāng)t=35時,s1=s=,代入可得:h=-

∴s1=t-

最后潮頭與小紅相距1.8千米時,即s-s1=1.8,

t2-t--t+=1.8

解得:t=50或t=20(不符合題意,舍去),

∴t=50,

小紅與潮頭相遇后,按潮頭速度與潮頭并行到達(dá)乙地用時6分鐘,

∴共需要時間為6+50-30=26分鐘,

∴小紅與潮頭相遇到潮頭離她1.8千米外共需要26分鐘.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖的中,,且上一點.今打算在上找一點,在上找一點,使得全等,以下是甲、乙兩人的作法:

(甲)連接,作的中垂線分別交點、點,則、兩點即為所求

(乙)過作與平行的直線交點,過作與平行的直線交點,則兩點即為所求

對于甲、乙兩人的作法,下列判斷何者正確?( 。

A. 兩人皆正確B. 兩人皆錯誤

C. 甲正確,乙錯誤D. 甲錯誤,乙正確

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】請利用直尺完成下列問題

1)如圖(1)示,利用網(wǎng)格畫圖:

①在BC上找一點P,使得PABAC的距離相等;

②在射線AP上找一點Q,使QBQC

2)如圖(2)示,點AB,C都在方格紙的格點上.請你再找一個格點D,使點AB,C,D組成一個軸對稱圖形,請在圖中標(biāo)出滿足條件的所有點D的位置.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC△ECD都是等邊三角形,B、CD三點在一條直線上,ADBE相交于點O,ADCE相交于點FACBE相交于點G

1△BCE△ACD全等嗎?請說明理由.

2)求∠BOD度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明為了了解氣溫對用電量的影響,對去年自己家的每月用電量和當(dāng)?shù)貧鉁剡M(jìn)行了統(tǒng)計.去年當(dāng)?shù)孛吭碌钠骄鶜鉁厝鐖D1,小明家去年月用電量如圖2.

根據(jù)統(tǒng)計圖,回答下面的問題:

(1)當(dāng)?shù)厝ツ暝缕骄鶜鉁氐淖罡咧、最低值各為多少?相?yīng)月份的用電量各是多少?

(2)請簡單描述月用電量與氣溫之間的關(guān)系;

(3)假設(shè)去年小明家用電量是所在社區(qū)家庭用電量的中位數(shù),據(jù)此他能否預(yù)測今年該社區(qū)的年用電量?請簡要說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,函數(shù)y=(k>0,x>0)的圖象經(jīng)過菱形OACD的頂點D和邊AC的中點E,若菱形OACD的邊長為3,則k的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖, DE AB E , DF AC F ,若 BD CD 、 BE CF ,

1)求證:AD平分BAC

2)已知AC 14,BE 2,求AB的長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,弦CD垂直平分OA,垂足為點M,連接并延長CO交⊙O于點E,分別連接DE,BE,DB,其中∠EDB=30°,CDE的平分線DNCE于點G,交⊙O于點N,延長CE至點F,使FG=FD.

(1)求證:DF是⊙O的切線;

(2)若⊙O半徑r8,求線段DB,BE與劣弧DE所圍成的陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把長方形紙片ABCD折疊,使頂點A與頂點C重合在一起,EF為折痕.若AB3,BC9.點D對應(yīng)點是G

1)求BE長;

2)求EF長.

查看答案和解析>>

同步練習(xí)冊答案