【題目】如圖,△ABC△ECD都是等邊三角形,BCD三點在一條直線上,ADBE相交于點OADCE相交于點F,ACBE相交于點G

1△BCE△ACD全等嗎?請說明理由.

2)求∠BOD度數(shù).

【答案】1△BCE≌△ACD.證明見解析;(2)120°.

【解析】

1)通過觀察圖形,根據(jù)等邊三角形的性質(zhì)就可以證明△BCE≌△ACD;

2)由(1△BCE≌△ACD可以得出∠ADC=∠BEC,而有∠AOB=∠EBC+∠ADB,就有∠AOB=∠EBC+∠BEC=∠DCE=60°,從而可以求出∠BOD的值.

1△BCE≌△ACD

理由:∵△ABC△ECD都是等邊三角形,

∴BC=ACCE=CD,∠BCA=∠ECD=∠BAC=60°

∴∠BCA+∠ACE=∠ECD+∠ACE,

∵∠BCE=∠ACD

△BCE△ACD中,

,

∴△BCE≌△ACDSAS);

2∵△BCE≌△ACD

∴∠ADC=∠BEC

∵∠AOB=∠EBC+∠ADC,

∴∠AOB=∠EBC+∠BEC=∠DCE=60°

∵∠AOB+∠BOD=180°,

∴∠BOD=120°

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知點O是等腰直角三角形ABC斜邊上的中點,AB=BC,EAC上一點,連結(jié)EB.

(1) 如圖1,若點E在線段AC上,過點AAMBE,垂足為M,交BO于點F.求證:OE=OF;

(2)如圖2,若點EAC的延長線上,AMBE于點M,交OB的延長線于點F,其它條件不變,則結(jié)論“OE=OF”還成立嗎?如果成立,請給出證明;如果不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC是等邊三角形,△ABD是等腰直角三角形,∠BAD=90°,AEBD于點E,連CD分別交AE,AB于點F,G,過點AAHCDBD于點H.則下列結(jié)論:①∠ADC=15°;AF=AG;AH=DF;④△AFG∽△CBG;AF=(﹣1)EF.其中正確結(jié)論的個數(shù)為(  )

A. 5 B. 4 C. 3 D. 2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,等腰RtABC中,∠A90°,點DE分別在邊AB,AC上,ADAE,連接DC,點M,P,N分別為DE,DC,BC的中點.

1)觀察猜想:圖1中,線段PMPN的數(shù)量關(guān)系是   ,位置關(guān)系是   

2)探究證明:把ADE繞點A逆時針方向旋轉(zhuǎn)到圖2的位置,連接MNBD,CE,判斷PMN的形狀,并說明理由;

3)拓展延伸:把ADE繞點A在平面內(nèi)自由旋轉(zhuǎn),若AD8,AB20,請直接寫出PMN面積的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線x軸交于點A,與y軸交于點C.拋物線經(jīng)過A,C兩點,且與x軸交于另一點BB在點A右側(cè)

1求拋物線的解析式及點B坐標;

2若點M是線段BC上的一動點,過點M的直線EF平行y軸交x軸于點F,交拋物線于點E.求ME長的最大值;

3試探究當ME取最大值時,在拋物線上、x軸下方是否存在點P,使以M,F(xiàn),B,P為頂點的四邊形是平行四邊形?若存在,請求出點P的坐標;若不存在,試說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點E在線段BC上,ABBC,DCBC,∠AED90°,且AEDE

1)求證:ABE≌△ECD

2)直接寫出線段AB、BC、CD之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某日的錢塘江觀潮信息如表:

按上述信息,小紅將交叉潮形成后潮頭與乙地之間的距離(千米)與時間(分鐘)的函數(shù)關(guān)系用圖3表示,其中:11:40時甲地交叉潮的潮頭離乙地12千米記為點,點坐標為,曲線可用二次函數(shù)是常數(shù))刻畫.

(1)求的值,并求出潮頭從甲地到乙地的速度;

(2)11:59時,小紅騎單車從乙地出發(fā),沿江邊公路以千米/分的速度往甲地方向去看潮,問她幾分鐘后與潮頭相遇?

(3)相遇后,小紅立即調(diào)轉(zhuǎn)車頭,沿江邊公路按潮頭速度與潮頭并行,但潮頭過乙地后均勻加速,而單車最高速度為千米/分,小紅逐漸落后,問小紅與潮頭相遇到落后潮頭1.8千米共需多長時間?(潮水加速階段速度是加速前的速度).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中,垂直平分,分別交、于點、,垂直平分,分別交,于點、

⑴如圖①,若,求的度數(shù);

⑵如圖②,若,求的度數(shù);

⑶若,直接寫出用表示大小的代數(shù)式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,EAC上一點,且AE=BC,過點AADCA,垂足為A,且AD=AC,ABDE交于點F試判斷線段ABDE的數(shù)量關(guān)系和位置關(guān)系,并說明理由

查看答案和解析>>

同步練習冊答案