【題目】已知,正方形ABCD中,∠MAN=45°,∠MAN繞點(diǎn)A順時(shí)針旋轉(zhuǎn),它的兩邊分別交CB、DC(或它們的延長(zhǎng)線)于點(diǎn)M、N,AH⊥MN于點(diǎn)H.
(1)如圖①,當(dāng)∠MAN繞點(diǎn)A旋轉(zhuǎn)到BM=DN時(shí),請(qǐng)你直接寫出AH與AB的數(shù)量關(guān)系:
(2)如圖②,當(dāng)∠MAN繞點(diǎn)A旋轉(zhuǎn)到BM≠DN時(shí),(1)中發(fā)現(xiàn)的AH與AB的數(shù)量關(guān)系還成立嗎?如果不成立請(qǐng)寫出理由,如果成立請(qǐng)證明;
(3)如圖③,已知∠MAN=45°,AH⊥MN于點(diǎn)H,且MH=2,NH=3,求AH的長(zhǎng).(可利用(2)得到的結(jié)論)

【答案】
(1)AH=AB
(2)解:數(shù)量關(guān)系成立.如圖②,延長(zhǎng)CB至E,使BE=DN.

∵ABCD是正方形,

∴AB=AD,∠D=∠ABE=90°,

在Rt△AEB和Rt△AND中, ,

∴Rt△AEB≌Rt△AND,

∴AE=AN,∠EAB=∠NAD,

∴∠EAM=∠NAM=45°,

在△AEM和△ANM中, ,

∴△AEM≌△ANM.

∴SAEM=SANM,EM=MN,

∵AB、AH是△AEM和△ANM對(duì)應(yīng)邊上的高,

∴AB=AH.


(3)解:如圖③分別沿AM、AN翻折△AMH和△ANH,得到△ABM和△AND,

∴BM=2,DN=3,∠B=∠D=∠BAD=90°.

分別延長(zhǎng)BM和DN交于點(diǎn)C,得正方形ABCD,

由(2)可知,AH=AB=BC=CD=AD.

設(shè)AH=x,則MC=x﹣2,NC=x﹣3,

在Rt△MCN中,由勾股定理,得MN2=MC2+NC2

∴52=(x﹣2)2+(x﹣3)2(6分)

解得x1=6,x2=﹣1.(不符合題意,舍去)

∴AH=6.


【解析】解:(1)如圖①AH=AB. (1)由三角形全等可以證明AH=AB,(2)延長(zhǎng)CB至E,使BE=DN,證明△AEM≌△ANM,能得到AH=AB,(3)分別沿AM、AN翻折△AMH和△ANH,得到△ABM和△AND,然后分別延長(zhǎng)BM和DN交于點(diǎn)C,得正方形ABCE,設(shè)AH=x,則MC=x﹣2,NC=x﹣3,在Rt△MCN中,由勾股定理,解得x.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】從甲、乙兩名同學(xué)中選拔一人參加中華好詩(shī)詞大賽,在相同的測(cè)試條件下,兩人5次測(cè)試成績(jī)(單位:分)如下:

甲:79,86,82,85,83;乙:88,79,90,81,72.

請(qǐng)回答下列問(wèn)題:

(1)甲成績(jī)的平均數(shù)是______,乙成績(jī)的平均數(shù)是______

(2)經(jīng)計(jì)算知=6,=42,你認(rèn)為選誰(shuí)參加比賽更合適,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,BO、CO分別平分∠ABC和∠ACB.計(jì)算:

(1)若∠A 60°,求∠BOC的度數(shù);

(2)若∠A 100°, 則∠BOC的度數(shù)是多少?

(3)若∠A 120°, 則∠BOC的度數(shù)又是多少?

(4)由(1)、(2)、(3),你發(fā)現(xiàn)了什么規(guī)律?請(qǐng)用一個(gè)等式將這個(gè)規(guī)律表示出來(lái).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,AB=BC,∠ABC=90°,點(diǎn)D是AB的中點(diǎn),連接CD,過(guò)點(diǎn)B作BG⊥CD,分別交CD,CA于點(diǎn)E,F(xiàn),與過(guò)點(diǎn)A且垂直于AB的直線相交于點(diǎn)G,連接DF,給出以下五個(gè)結(jié)論: ① ;②∠ADF=∠CDB;③點(diǎn)F是GE的中點(diǎn);④AF= AB;⑤SABC=5SBDF ,
其中正確結(jié)論的序號(hào)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某活動(dòng)小組為了估計(jì)裝有5個(gè)白球和若干個(gè)紅球(每個(gè)球除顏色外都相同)的袋中紅球接近多少個(gè),在不將袋中球倒出來(lái)的情況下,分小組進(jìn)行摸球試驗(yàn),兩人一組,共20組進(jìn)行摸球?qū)嶒?yàn).其中一位學(xué)生摸球,另一位學(xué)生記錄所摸球的顏色,并將球放回袋中搖勻,每一組做400次試驗(yàn),匯總起來(lái)后,摸到紅球次數(shù)為6000次.
(1)估計(jì)從袋中任意摸出一個(gè)球,恰好是紅球的概率是多少?
(2)請(qǐng)你估計(jì)袋中紅球接近多少個(gè)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:ABCD的兩邊AB,AD的長(zhǎng)是關(guān)于x的方程x2﹣mx+ 的兩個(gè)實(shí)數(shù)根.
(1)當(dāng)m為何值時(shí),ABCD是菱形?
(2)若AB的長(zhǎng)為2,那么ABCD的周長(zhǎng)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,在正方形ABCD中,P是對(duì)角線AC上的一點(diǎn),點(diǎn)E在BC的延長(zhǎng)線上,且PE=PB.
(1)求證:△BCP≌△DCP;
(2)求證:∠DPE=∠ABC;
(3)把正方形ABCD改為菱形,其它條件不變(如圖②),若∠ABC=58°,則∠DPE=度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列函數(shù)中,y隨x的增大而增大的是(
A.y=
B.y=﹣x+5
C.y= x
D.y= (x<0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在同一平面直角坐標(biāo)系中,正確表示函數(shù)y=kx+k(k≠0)與y= (k≠0)的圖象的是(
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案