【題目】如圖所示,一次函數(shù)ykx+b的圖象與反比例函數(shù)y的圖象交于M、N兩點.

1)根據(jù)圖中條件求出反比例函數(shù)和一次函數(shù)的解析式;

2)連結(jié)OMON,求MON的面積;

3)根據(jù)圖象,直接寫出使一次函數(shù)的值大于反比例函數(shù)的值的x的取值范圍.

【答案】(1)y2x4.(28,(3)﹣1x0x3

【解析】

1)把M3,2)代入y,即可求得m,得到y,代入N(﹣1a)求得a,得到N(﹣1,﹣6),把兩點代入ykx+b,解之即可求得k、b,從而求出兩函數(shù)的解析式;

2)設(shè)直線MNx軸于點A,求得A點坐標(biāo),然后根據(jù)SMONSMOA+SNOA求得即可;

3)根據(jù)MN的坐標(biāo)即可得到結(jié)論.

解:(1)∵一次函數(shù)ykx+b的圖象與反比例函數(shù)y的圖象交于M3,2)、N(﹣1,a)兩點

m6,a=﹣6

∴反比例函數(shù)y,N(﹣1,﹣6),

M3,2),N(﹣1,﹣6)代入ykx+b,

解得,

∴一次函數(shù)的解析式的解析式為y2x4

2)設(shè)直線MNx軸于點A

當(dāng)y0時,2x40

x2,

A2,0),

SMONSMOA+SNOAOAyMyN)=×2×88;

3)由圖象可知,當(dāng)﹣1x0x3時一次函數(shù)的值大于反比例函數(shù)的值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題提出:將一個邊長為nn≥2)的正三角形的三條邊n等分,連接各邊對應(yīng)的等分點, 則該三角形被剖分的網(wǎng)格中的結(jié)點個數(shù)和線段數(shù)分別是多少呢?

問題探究:要研究上面的問題,我們不妨先從特例入手,進(jìn)而找到一般規(guī)律

探究一:將一個邊長為2的正三角形的三條邊平分,連接各邊中點,則該三角形被剖分的網(wǎng)格中的結(jié)點個數(shù)和線段數(shù)分別是多少?

如圖1,連接邊長為2的正三角形三條邊的中點,從上往下:共有1+2+3=6個結(jié)點.邊長為1的正三角形,第一層有1個,第二層有2個,共有1+2=3個,線段數(shù)為3×3=9條;邊長為2的正三角形有1個,線段數(shù)為3條,總共有1+2+1=2×1+2+3=12條線段.

探究二:將一個邊長為3的正三角形的三條邊三等分,連接各邊對應(yīng)的等分點,則該三角形被剖分的網(wǎng)格中的結(jié)點個數(shù)和線段數(shù)分別是多少?

如圖2,連接邊長為3的正三角形三條邊的對應(yīng)三等分點,從上往下:共有1+2+3+4=10個結(jié)點.邊長為1的正三角形,第一層有1個,第二層有2個,第三層有3個,共有1+2+3=6個,線段數(shù)為3×6=18條;邊長為2的正三角形有1+2=3個,線段數(shù)為3×3=9條,邊長為3的正三角形有1個,線段數(shù)為3條,總共有1+2+3+1+2+1=3×1+2+3+4=30條線段.

探究三:

請你仿照上面的方法,探究將邊長為4的正三角形的三條邊四等分(圖3),連接各邊對應(yīng)的等分點,該三角形被剖分的網(wǎng)格中的結(jié)點個數(shù)和線段數(shù)分別是多少?

(畫出示意圖,并寫出探究過程)

問題解決:

請你仿照上面的方法,探究將一個邊長為nn≥2)的正三角形的三條邊n等分,連接各邊對應(yīng)的等分點,則該三角形被剖分的網(wǎng)格中的結(jié)點個數(shù)和線段數(shù)分別是多少?(寫出探究過程)

實際應(yīng)用:

將一個邊長為30的正三角形的三條邊三十等分,連接各邊對應(yīng)的等分點,則該三角形被剖分的網(wǎng)格中的結(jié)點個數(shù)和線段數(shù)分別是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,AEBC,F(xiàn)GBC,1=2,D=3+60°,CBD=70°.

(1)求證:ABCD;

(2)求∠C的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,函數(shù)y=kx+bk≠0)的圖象經(jīng)過點B2,0),與函數(shù)y=2x的圖象交于點A,則不等式0kx+b2x的解集為(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,已知直線l1、l2,直線l3和直線l1、l2交于點CD,在直線l3上有動點P(點P與點C、D不重合),點A在直線l1上,點B在直線l2上.

1)如果點PC、D之間運動時,且滿足∠1+3=∠2,請寫出l1l2之間的位置關(guān)系 ;

2)如圖②如果l1l2,點P在直線l1的上方運動時,試猜想∠1+2與∠3之間關(guān)系并給予證明;

3)如果l1l2,點P在直線l2的下方運動時,請直接寫出∠PAC、∠PBD、∠APB之間的關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖1,將兩張正方形紙片A與三張正方形紙片B放在一起(不重疊無縫隙),拼成一個寬為10的長方形,求正方形紙片AB的邊長.

(2)如圖2,將一張正方形紙片D放在一正方形紙片C的內(nèi)部,陰影部分的面積為4;如圖3,將正方形紙片CD各一張并列放置后構(gòu)造一個新的正方形,陰影部分的面積為48,求正方形C、D的面積之和.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖已知∠1=∠2,∠BAD=∠BCD,則下列結(jié)論:ABCD,②ADBC,③∠B=∠D,④∠D=∠ACB,正確的有( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了促進(jìn)學(xué)生多樣化發(fā)展,某校組織開展了社團(tuán)活動,分別設(shè)置了體育類、藝術(shù)類、文學(xué)類及其它類社團(tuán)(要求人人參與社團(tuán),每人只能選擇一項).為了解學(xué)生喜愛哪種社團(tuán)活動,學(xué)校做了一次抽樣調(diào)查.根據(jù)收集到的數(shù)據(jù),繪制成如下兩幅不完整的統(tǒng)計圖, 請根據(jù)圖中提供的信息,完成下列問題:

1)此次共調(diào)查了 人;

2)求文學(xué)社團(tuán)在扇形統(tǒng)計圖中所占圓心角為 度;

3)請將條形統(tǒng)計圖補(bǔ)充完整;

4)若該校有 1500 名學(xué)生,請估計喜歡體育類社團(tuán)的學(xué)生有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一副含30°和45°角的三角板ABC和DEF疊合在一起,邊BC與EF重合,BC=EF=12cm(如圖1),點G為邊BC(EF)的中點,邊FD與AB相交于點H,此時線段BH的長是____.現(xiàn)將三角板DEF繞點G按順時針方向旋轉(zhuǎn)(如圖2),在∠CGF從0°到60°的變化過程中,點H相應(yīng)移動的路徑長共為_________.(結(jié)果保留根號).

查看答案和解析>>

同步練習(xí)冊答案