【題目】如圖,函數(shù)y=kx+bk≠0)的圖象經(jīng)過點(diǎn)B2,0),與函數(shù)y=2x的圖象交于點(diǎn)A,則不等式0kx+b2x的解集為(  )

A. B. C. D.

【答案】A

【解析】

先利用正比例函數(shù)解析式確定A點(diǎn)坐標(biāo),然后觀察函數(shù)圖象得到,當(dāng)x1時,直線y=2x都在直線y=kx+b的上方,當(dāng)x2時,直線y=kx+bx軸上方,于是可得到不等式0kx+b2x的解集.

設(shè)A點(diǎn)坐標(biāo)為(x,2),

Ax,2)代入y=2x,

2x=2,解得x=1,

A點(diǎn)坐標(biāo)為(12),

所以當(dāng)x1時,2xkx+b,

∵函數(shù)y=kx+bk≠0)的圖象經(jīng)過點(diǎn)B20),

x2時,kx+b0,

∴不等式0kx+b2x的解集為1x2

故選:A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,拋物線y=x2+bx+cx軸交于A(-10)、B兩點(diǎn)(AB左),y軸交于點(diǎn)C0,-3).

1)求拋物線的解析式;

2)若點(diǎn)D是線段BC下方拋物線上的動點(diǎn),求四邊形ABCD面積的最大值;

3)若點(diǎn)Ex軸上,點(diǎn)P在拋物線上.是否存在以BCE、P為頂點(diǎn)且以BC為一邊的平行四邊形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校九年級學(xué)生舉行朗誦比賽,全年級學(xué)生都參加,學(xué)校對表現(xiàn)優(yōu)異的學(xué)生進(jìn)行表彰,設(shè)置一、二、三等獎各進(jìn)步獎共四個獎項(xiàng),賽后將九年級(1)班的獲獎情況繪制成如圖所示的兩幅不完整的統(tǒng)計(jì)圖,請根據(jù)圖中的信息,解答下列問題:

(1)九年級(1)班共有 名學(xué)生;

(2)將條形圖補(bǔ)充完整:在扇形統(tǒng)計(jì)圖中,“二等獎”對應(yīng)的扇形的圓心角度數(shù)是 ;

(3)如果該九年級共有1250名學(xué)生,請估計(jì)榮獲一、二、三等獎的學(xué)生共有多少名.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】感知:如圖①,ABC是等腰直角三角形,∠ACB=90°,正方形CDEF的頂點(diǎn)D、F分別在邊ACBC上,易證:AD=BF(不需要證明);

探究:將圖①的正方形CDEF繞點(diǎn)C順時針旋轉(zhuǎn)αα90°),連接ADBF,其他條件不變,如圖②,求證:AD=BF

應(yīng)用:若α=45°,CD=,BE=1,如圖③,則BF=   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知F是平行四邊形ABCD的邊DC中點(diǎn),若三角形EFC,ABE,AFD的面積分別為3平方厘米,4平方厘米,5平方厘米,平行四邊形ABCD的面積是整數(shù)。則三角形AEF的面積為_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,拋物線y= x2+bx+c與x軸、y軸分別相交于點(diǎn)A 1,0)、B(0,3)兩點(diǎn),其頂點(diǎn)為D

(1)求這條拋物線的解析式;

(2)若拋物線與x軸的另一個交點(diǎn)為E. 求△ODE的面積;拋物線的對稱軸上是否存在點(diǎn)P使得△PAB的周長最短。若存在請求出P點(diǎn)的坐標(biāo),若不存在說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,一次函數(shù)ykx+b的圖象與反比例函數(shù)y的圖象交于M、N兩點(diǎn).

1)根據(jù)圖中條件求出反比例函數(shù)和一次函數(shù)的解析式;

2)連結(jié)OMON,求MON的面積;

3)根據(jù)圖象,直接寫出使一次函數(shù)的值大于反比例函數(shù)的值的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù)y=x+4的圖象與二次函數(shù)y=ax(x﹣2)的圖象相交于A(﹣1,b)和B,點(diǎn)P是線段AB上的動點(diǎn)(不與A、B重合),過點(diǎn)P作PC⊥x軸,與二次函數(shù)y=ax(x﹣2)的圖象交于點(diǎn)C.

(1)求a、b的值及B點(diǎn)的坐標(biāo);

(2)求線段PC長的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,點(diǎn),,分別在邊,,上,且,,連結(jié),,,

1)求證:

2)判斷的形狀,并說明理由.

3)若,當(dāng)_______時,.請說明理由.

查看答案和解析>>

同步練習(xí)冊答案