【題目】為響應(yīng)區(qū)美麗廣西 清潔鄉(xiāng)村的號(hào)召,某校開(kāi)展美麗廣西 清潔校園的活動(dòng),該校經(jīng)過(guò)精心設(shè)計(jì),計(jì)算出需要綠化的面積為498m2 , 綠化150m2后,為了更快的完成該項(xiàng)綠化工作,將每天的工作量提高為原來(lái)的1.2倍.結(jié)果一共用20天完成了該項(xiàng)綠化工作.該項(xiàng)綠化工作原計(jì)劃每天完成多少m2?

【答案】該項(xiàng)綠化工作原計(jì)劃每天完成22m2

【解析】試題分析

設(shè)原計(jì)劃每天完成m2,則通過(guò)效率后每天可完成m2提高效率前綠化了天,提高效率后綠化了天,根據(jù)一共用20天完成了該項(xiàng)綠化工作可列出方程,解方程即可求得原計(jì)劃每天完成的工作量.

試題解析

設(shè)綠化工作原計(jì)劃每天完成m2 , 由題意得:

+=20,

解得: =22,

經(jīng)檢驗(yàn): =22是原分式方程的解,

答:該項(xiàng)綠化工作原計(jì)劃每天完成22m2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,函數(shù)y=x的圖象與函數(shù)y=(x>0)的圖象相交于點(diǎn)P(2,m).

(1)求m,k的值;

(2)直線y=4與函數(shù)y=x的圖象相交于點(diǎn)A,與函數(shù)y=(x>0)的圖象相交于點(diǎn)B,求線段AB長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠A=120°,∠B=40°,如果過(guò)點(diǎn)A的一條直線l把△ABC分割成兩個(gè)等腰三角形,直線lBC交于點(diǎn)D,那么∠ADC的度數(shù)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】探尋勾股數(shù):直角三角形三邊長(zhǎng)是整數(shù)時(shí)我們稱之為勾股數(shù),勾股數(shù)有多少?勾股數(shù)有規(guī)律嗎?

1)請(qǐng)你寫(xiě)出兩組勾股數(shù).

2)試構(gòu)造勾股數(shù).構(gòu)造勾股數(shù)就是要尋找3個(gè)正整數(shù),使他們滿足兩個(gè)數(shù)的平方和(或差)等于第三數(shù)的平方,即滿足以下形式:

   2+   2   2;或②   2   2   2

③要滿足以上①、②的形式,不妨從乘法公式入手.我們已經(jīng)知道③(x+y2﹣(xy24xy.如果等式③右邊也能寫(xiě)成   2的形式,就能符合②的形式.

因此不妨設(shè)xm2,yn2,(m、n為任意正整數(shù),mn),請(qǐng)你寫(xiě)出含m、n的這三個(gè)勾股數(shù)并證明它們是勾股數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ADABC的角平分線,線段AD的垂直平分線分別交ABAC于點(diǎn)E、F,連接DE、DF.

(1)試判定四邊形AEDF的形狀,并證明你的結(jié)論.

(2)若DE=13,EF=10,求AD的長(zhǎng).

(3)ABC滿足什么條件時(shí),四邊形AEDF是正方形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線上部分點(diǎn)的橫坐標(biāo), 縱坐標(biāo)的對(duì)應(yīng)值如下表:

0

1

2

0

4

6

6

4

從上表可知,下列說(shuō)法正確的是

①拋物線與軸的一個(gè)交點(diǎn)為; ②拋物線與軸的交點(diǎn)為

③拋物線的對(duì)稱軸是:直線;   在對(duì)稱軸左側(cè)增大而增大.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,A、B、CD在同一直線上,ABCD,DEAF,若要使△ACF≌△DBE,則還需要補(bǔ)充一個(gè)條件:_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,把矩形紙片ABCD沿EF翻折,點(diǎn)A恰好落在BC邊的A′處,若AB= ,EFA=60°,則四邊形A′B′EF的周長(zhǎng)是(

A. 1+3 B. 3+ C. 4+ D. 5+

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,分別是可活動(dòng)的菱形和平行四邊形學(xué)具,已知平行四邊形較短的邊與菱形的邊長(zhǎng)相等.

1)在一次數(shù)學(xué)活動(dòng)中,某小組學(xué)生將菱形的一邊與平行四邊形較短邊重合,擺拼成如圖1所示的圖形,AF經(jīng)過(guò)點(diǎn)C,連接DEAF于點(diǎn)M,觀察發(fā)現(xiàn):點(diǎn)MDE的中點(diǎn).

下面是兩位學(xué)生有代表性的證明思路:

思路1:不需作輔助線,直接證三角形全等;

思路2:不證三角形全等,連接BDAF于點(diǎn)H.…

請(qǐng)參考上面的思路,證明點(diǎn)MDE的中點(diǎn)(只需用一種方法證明);

2)如圖2,在(1)的前提下,當(dāng)∠ABE=135°時(shí),延長(zhǎng)AD、EF交于點(diǎn)N,求的值;

3)在(2)的條件下,若=kk為大于的常數(shù)),直接用含k的代數(shù)式表示的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案