【題目】如圖,已知DE分別為ABC的邊AC、BC的中點,AFABD的中線,連接EF,若四邊形AFEC的面積為15,且AB8,則ABCAB邊上高的長為( 。

A.3B.6C.9D.無法確定

【答案】B

【解析】

連接DE,設SDEFx,求得SBDE2xSCDE2x,SABD4x, SADF2x即可根據(jù)四邊形AFEC的面積為15,求出x的值,求得△ABC的面積,根據(jù)三角形面積公式即可求出高的長.

連接DE,

SDEFx,

D、E分別為△ABC的邊AC、BC的中點,AF為△ABD的中線,

SBDE2SDEF2x,

SCDESBDE2x,

SABDSBCD4x,

SADF2x

∴四邊形AFEC的面積=2x+3x5x15,

x3,

∴△ABC的面積=8x24

ABCAB邊上高的長為24×2÷86

故選:B

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知∠MON150°,∠AOB90°,OC平分∠MOB

1)如圖1,若OAOM重合時,求∠BON的度數(shù);

2)如圖2,若∠AOC35°,求∠BON的度數(shù);

3)當∠AOB繞點O逆時針旋轉到如圖3的位置,探究∠AOC與∠BON的數(shù)量關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,EBACM,交FCD,ABFCN,E=F=90,B=C,AE=AF,給出下列結論:①∠1=2;BE=CF;③△ACN≌△ABM;CD=DN。其中正確的結論有( 

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】經(jīng)過頂點的一條直線,分別是直線上兩點,且

1)若直線經(jīng)過的內部,且在射線上,請解決下面兩個問題:

如圖1,若,

(填,);

如圖2,若,請?zhí)砑右粋關于關系的條件 ,使中的兩個結論仍然成立,并證明兩個結論成立.

2)如圖3,若直線經(jīng)過的外部,,請?zhí)岢?/span>三條線段數(shù)量關系的合理猜想(不要求證明).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為舉辦校園文化藝術節(jié),甲、乙兩班準備給合唱同學購買演出服裝(一人一套),兩班共92(其中甲班比乙班人多,且甲班不到90),下面是供貨商給出的演出服裝的價格表:

購買服裝的套數(shù)

1套至45

46套至90

91套以上

每套服裝的價格

60

50

40

如果兩班單獨給每位同學購買一套服裝,那么一共應付5020元.

(1)甲、乙兩班聯(lián)合起來給每位同學購買一套服裝,比單獨購買可以節(jié)省多少錢?

(2)甲、乙兩班各有多少名同學?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】先閱讀理解下面的例題,再按要求解答下列問題:

例題:解一元二次不等式.

解∵,∴可化為.

由有理數(shù)的乘法法則:兩數(shù)相乘,同號得正,得:①

解不等式組①,得,解不等式組②,得

的解集為.

即一元二次不等式的解集為.

1)一元二次不等式的解集為____________;

2)試解一元二次不等式;

3)試解不等式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在中,,,,點從點出發(fā)沿方向以每秒2個單位長度的速度向點勻速運動,同時點從點出發(fā)沿方向以每秒1個單位長度的速度向點勻速運動,當其中一點到達終點時,另一個點也隨之停止運動.設點、運動的時間是,過點于點,連接.

1)求證:;

2)四邊形能夠成為菱形嗎?若能,求出的值;若不能,請說明理由;

3)當________時,為直角三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲口袋中有個白球、個紅球,乙口袋中有個白球、個紅球,這些球除顏色外無其他差別.分別從每個口袋中隨機摸出個球.

(1)求摸出的個球都是白球的概率.

(2)下列事件中,概率最大的是( ).

A.摸出的個球顏色相同 B.摸出的個球顏色不相同

C.摸出的個球中至少有個紅球 D.摸出的個球中至少有個白球

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列說法正確的是(

A. 一組數(shù)據(jù)2,2,3,4,這組數(shù)據(jù)的中位數(shù)是2

B. 了解一批燈泡的使用壽命的情況,適合抽樣調查

C. 小明的三次數(shù)學成績是126分,130分,136分,則小明這三次成績的平均數(shù)是131

D. 某日最高氣溫是,最低氣溫是,則該日氣溫的極差是

查看答案和解析>>

同步練習冊答案