如圖,一次函數(shù)y1=kx+b與反比例函數(shù)y2=
m
x
交于A、B兩點,與x軸交于點C,tan∠OCB=
2
3
,已知點D(-6,0),BD=BO=5.
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)求點A的坐標,并根據(jù)圖象直接寫出當y1>y2時的取值范圍.
(1)過點B作BE⊥x軸,
∵BD=BO,
∴DE=OE=
1
2
OD=3,
在Rt△BOE中,BE=
BO2-OE2
=4,
故可得B的坐標為(-3,-4),
在Rt△BCE中,tan∠OCB=
BE
CE
=
2
3
,則可求得:CE=6,OC=3,
即點C的坐標為(3,0),
∵y1=kx+b,過點B、C,則
-3k+b=-4
3k+b=0

解得:
k=
2
3
b=-2
,
∴y1=
2
3
x-2,
∵y2=
m
x
過點B,
∴m=12,
∴y2=
12
x

(2)
y=
2
3
x-2
y=
12
x

解得:
x1=-3
y1=-4
,
x2=6
y2=2
,
∴點A的坐標為(6,2),
結(jié)合圖形可得,當-3<x<0或x>-6時,y1>y2
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知直線l分別與x軸、y軸交于A,B兩點,與雙曲線y=
a
x
(a≠0,x>0)分別交于D、E兩點.
(1)若點D的坐標為(4,1),點E的坐標為(1,4):
①分別求出直線l與雙曲線的解析式;
②若將直線l向下平移m(m>0)個單位,當m為何值時,直線l與雙曲線有且只有一個交點?
(2)假設(shè)點A的坐標為(a,0),點B的坐標為(0,b),點D為線段AB的n等分點,請直接寫出b的值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知反比例函數(shù)y=
k1
2x
的圖象與一次函數(shù)y=k2x+b的圖象交于A,B兩點,A(1,n),B(-
1
2
,-2).
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)在x軸上是否存在點P,使△AOP為等腰三角形?若存在,請你直接寫出P點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,直線y=2x與雙曲線y=
8
x
交于點A、E,直線AB交雙曲線于另一點B(2m,m),連接EB并延長交x軸于點F.
(1)m=______;
(2)求直線AB的解析式;
(3)求△EOF的面積;
(4)若點P為坐標平面內(nèi)一點,且以A,B,E,P為頂點的四邊形是平行四邊形,請直接寫出所有滿足條件的點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知反比例函數(shù)y=
12
x
的圖象和一次函數(shù)y=kx-7的圖象都經(jīng)過點P(m,2).
(1)求這個一次函數(shù)的解析式;
(2)如果等腰梯形ABCD的頂點A、B在這個一次函數(shù)的圖象上,頂點C、D在這個反比例函數(shù)的圖象上,兩底AD、BC與y軸平行,且A和B的橫坐標分別為a和a+2,求a的值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,直線y=6-x交x軸、y軸于A、B兩點,P是反比例函數(shù)y=
4
x
(x>0)
圖象上位于直線下方的一點,過點P作x軸的垂線,垂足為點M,交AB于點E,過點P作y軸的垂線,垂足為點N,交AB于點F.則AF•BE=______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在平面直角坐標系中有一正方形AOBC,反比例函數(shù)y=
k
x
經(jīng)過正方形AOBC對角線的支點,半徑為(4-2
2
)的圓內(nèi)切于△ABC,求k的值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,P是雙曲線y=
4
x
(x>0)的一個分支上的一點,以點P為圓心,1個單位長度為半徑作⊙P,當⊙P與直線y=3相切時,點P的坐標為______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:等腰△OAB在直角坐標系中的位置如圖,點A坐標為(-3
3
,3),點B坐標為(-6,0).
(1)若將△OAB沿x軸向右平移a個單位,此時點A恰好落在反比例函數(shù)y=
6
3
x
的圖象上,求a的值;
(2)若△OAB繞點O按逆時針方向旋轉(zhuǎn)α度(0<α<360).
①當α=30°時,點B恰好落在反比例函數(shù)y=
k
x
的圖象上,求k的值;
②問點A、B能否同時落在①中的反比例函數(shù)的圖象上?若能,直接寫出α的值;若不能,請說明理由.

查看答案和解析>>

同步練習冊答案