分析 根據(jù)平行四邊形的對(duì)邊相等和對(duì)角線互相平分可得,OB=OD,又因?yàn)镋點(diǎn)是CD的中點(diǎn),可得OE是△BCD的中位線,可得OE=$\frac{1}{2}$BC,所以易求△DOE的周長(zhǎng).
解答 解:∵?ABCD的周長(zhǎng)為36,
∴2(BC+CD)=36,則BC+CD=18.
∵四邊形ABCD是平行四邊形,對(duì)角線AC,BD相交于點(diǎn)O,BD=12,
∴OD=OB=$\frac{1}{2}$BD=6.
又∵點(diǎn)E是CD的中點(diǎn),
∴OE是△BCD的中位線,DE=$\frac{1}{2}$CD,
∴OE=$\frac{1}{2}$BC,
∴△DOE的周長(zhǎng)=OD+OE+DE=$\frac{1}{2}$BD+$\frac{1}{2}$(BC+CD)=6+9=15,
即△DOE的周長(zhǎng)為15.
故答案為:15.
點(diǎn)評(píng) 本題考查了三角形中位線定理、平行四邊形的性質(zhì).解題時(shí),利用了“平行四邊形對(duì)角線互相平分”、“平行四邊形的對(duì)邊相等”的性質(zhì).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{2}{3}$ | B. | $\frac{1}{5}$ | C. | $\frac{2}{5}$ | D. | $\frac{3}{5}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | x=-$\frac{a}$ | B. | x=1 | C. | x=0 | D. | x=3 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com