分析 (1)由AC為圓O的切線,利用切線的性質(zhì)得到OD垂直于AC,在直角三角形ADO中,利用銳角三角函數(shù)定義,根據(jù)tan∠AOD及AD的值,求出OD的值即可;
(2)連接OE,由CE=OD=3,且OD與AE平行,利用一組對邊平行且相等的四邊形為平行四邊形,根據(jù)平行四邊形的對邊平行得到OE與AD平行,再由DA與AE垂直得到OE與AC垂直,即可得證.
解答 解:(1)∵AB與圓O相切,
∴OD⊥AB
在Rt△BDO中,BD=4,tan∠BOD=$\frac{BD}{OD}$=$\frac{2}{3}$,
∴OD=6;
(2)連接OE,
∵AE=OD=6,AE∥OD,
∴四邊形AEOD為平行四邊形,
∴AD∥EO,
∵DA⊥AE,
∴OE⊥AC,
又∵OE為圓的半徑,
∴AC為圓O的切線;
點評 此題考查了切線的判定與性質(zhì),銳角三角函數(shù)定義,平行四邊形的判定與性質(zhì),以及平行線的性質(zhì),熟練掌握切線的判定與性質(zhì)是解本題的關(guān)鍵.
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
A. | a | B. | 2b | C. | 2a-2b | D. | -2b |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
A. | 4個 | B. | 3個 | C. | 2個 | D. | 1個 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com