如圖,銳角△ABC中,BD和CE分別是AC和AB的高,若BD和CE所夾的銳角為61°,則∠ABC+∠ACB=
119
119
°.
分析:先根據(jù)鄰補角的和等于180°求出∠EFD的度數(shù),再根據(jù)四邊形的內(nèi)角和等于360°求出∠A的度數(shù),然后利用三角形的內(nèi)角和定理求解.
解答:解:∵BD和CE所夾的銳角為61°,
∴∠EFD=180°-61°=119°,
∵BD和CE分別是AC和AB的高,
∴∠A=360°-90°×2-119°=61°,
在△ABC中,∠ABC+∠ACB=180°-∠A=180°-61°=119°.
故答案為:119.
點評:本題考查了四邊形的內(nèi)角和等于360°,三角形的內(nèi)角和定理,求出∠A的度數(shù)是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,銳角△ABC中,PQRS是△ABC的內(nèi)接矩形,且S△ABC=nS矩形PQRS,其中n為不小于3的自然數(shù).求證:
BSAB
需為無理數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,銳角△ABC中,AB=10cm,BC=9cm,△ABC的面積為27cm2.求tanB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

10、如圖,銳角△ABC中,AD和CE分別是BC和AB邊上的高,若AD與CE所夾的銳角是58°,則∠BAC+∠BCA的大小是
122°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1997•浙江)如圖,銳角△ABC中,以BC為直徑的半圓分別交AB,AC于點D,E,記△ADE的面積為S1,△ABC的面積為S2,則
S1
S2
=(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,銳角△ABC中,AD⊥BC于D,BE⊥AC于E,AD與BE相交于F,那么∠ACB與∠DFE 的關(guān)系是( 。

查看答案和解析>>

同步練習(xí)冊答案