【題目】在平面直角坐標(biāo)系中,平行四邊形ABOC如圖放置,點(diǎn)A、C的坐標(biāo)分別是(0,4)、(﹣1,0),將此平行四邊形繞點(diǎn)O順時針旋轉(zhuǎn)90°,得到平行四邊形ABOC′.

(1)若拋物線經(jīng)過點(diǎn)C、A、A,求此拋物線的解析式;

(2)點(diǎn)M時第一象限內(nèi)拋物線上的一動點(diǎn),問:當(dāng)點(diǎn)M在何處時,AMA的面積最大?最大面積是多少?并求出此時M的坐標(biāo);

(3)若P為拋物線上一動點(diǎn),Nx軸上的一動點(diǎn),點(diǎn)Q坐標(biāo)為(1,0),當(dāng)PN、BQ構(gòu)成平行四邊形時,求點(diǎn)P的坐標(biāo),當(dāng)這個平行四邊形為矩形時,求點(diǎn)N的坐標(biāo).

【答案】1y=-x23x4;(2△AMA′的面積最大SAMA′8,M2,6);(3)當(dāng)P104),P23,4),P3,4),P4,-4)時,PN、B、Q構(gòu)成平行四邊形;當(dāng)這個平行四邊形為矩形時,N10,0),N23,0.

【解析】試題分析:(1)先由OA′OA得到點(diǎn)A′的坐標(biāo),再用點(diǎn)C、A、A′的坐標(biāo)即可求此拋物線的解析式;(2)連接AA′, 過點(diǎn)M MN⊥x軸,交AA′于點(diǎn)N,△AMA′分割為△AMN△A′MN, △AMA′的面積=△AMA′的面積+△AMN的面積=OA′MN,設(shè)點(diǎn)M的橫坐標(biāo)為x,借助拋物線的解析式和AA′的解析式,建立MN的長關(guān)于x的函數(shù)關(guān)系式,再據(jù)此建立△AMA′的面積關(guān)于x的二次函數(shù)關(guān)系式,再求△AMA′面積的最大值以及此時M的坐標(biāo);(3)在P、N、B、Q 這四個點(diǎn)中,B、Q 這兩個點(diǎn)是固定點(diǎn),因此可以考慮將BQ作為邊、將BQ作為對角線分別構(gòu)造符合題意的圖形,再求解.

試題解析:(1平行四邊形ABOC繞點(diǎn)O順時針旋轉(zhuǎn)90°,得到平行四邊形A′B′OC′,點(diǎn)A的坐標(biāo)是(0,4),點(diǎn)A′的坐標(biāo)為(4,0),點(diǎn)B的坐標(biāo)為(1,4.

拋物線過點(diǎn)CA,A′,設(shè)拋物線的函數(shù)解析式為yax2bxca≠0,可得:

. 解得:.∴拋物線的函數(shù)解析式為y=-x23x4.

2)連接AA′,設(shè)直線AA′的函數(shù)解析式為ykxb,可得

.解得:.

直線AA'的函數(shù)解析式是y=-x4.

設(shè)Mx,-x23x4),

SAMA′×4×[x23x4一(一x4]=一2x28x=一2x228.

∴x2時,△AMA′的面積最大SAMA′8

∴M26.

3)設(shè)P點(diǎn)的坐標(biāo)為(x,-x23x4),當(dāng)P、N、B、Q構(gòu)成平行四邊形時,

當(dāng)BQ為邊時,PN∥BQPNBQ

∵BQ4,x23x4±4.

當(dāng)一x23x44時,x10,x23,即P10,4),P23,4);

當(dāng)一x23x4=一4時,x3,x4,即P3,4),P4,-4);

當(dāng)BQ為對角線時,PB∥x軸,即P10,4),P234;

當(dāng)這個平行四邊形為矩形時,即Pl04),P23,4)時,N10,0),N23,0.

綜上所述,當(dāng)P10,4),P23,4),P3,4),P4,-4)時,P、N、B、Q構(gòu)成平行四邊形;當(dāng)這個平行四邊形為矩形時,N100),N230.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AC⊥BC,BD⊥AD,AC BD 交于O,AC=BD.

求證:(1)BC=AD;

(2)△OAB是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】x2﹣ax+1是完全平方式,則有理數(shù)a的值為( 。

A. 1 B. 2 C. ±1 D. ±2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算(x﹣1)(x+2)的結(jié)果是 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知網(wǎng)格上最小的正方形的邊長為1.

(1)分別寫出A,B,C三點(diǎn)的坐標(biāo);

A_____________;B_____________;C _____________.

(2)作△ABC關(guān)于y軸的對稱圖形△A′B′C′;

(3)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列運(yùn)算正確的是
A.2a+3a=5a2
B.a6÷a2a3
C.(-3a3)2=9a6
D.(a-3)2a2-9

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】給出下列說法:

①在直角三角形ABC中,已知兩邊長為3和4,則第三邊長為5;

②三角形的三邊a、b、c滿足+=,則C=90

③△ABC中,若A: B: C=1:5:6,則△ABC是直角三角形;

④△ABC中,若a:b:c=1:2: ,則這個三角形是直角三角形。

其中,錯誤的說法的個數(shù)為( )

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:AD與⊙O相切于點(diǎn)D,AF經(jīng)過圓心與圓交于點(diǎn)E、F,連接DE、DF,且EF=6,AD=4.

(1)證明:AD2=AEAF;

(2)延長AD到點(diǎn)B,使DB=AD,直徑EF上有一動點(diǎn)C,連接CB交DF于點(diǎn)G,連接EG,設(shè)∠ACB=α,BG=x,EG=y.

①當(dāng)α=900時,探索EG與BD的大小關(guān)系?并說明理由;

②當(dāng)α=1200時,求y與x的關(guān)系式,并用x的代數(shù)式表示y.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某年級380名師生秋游,計(jì)劃租用7輛客車,現(xiàn)有甲、乙兩種型號客車,它們的載客量和租金如表.

甲種客車

乙種客車

載客量(座/輛)

60

45

租金(元/輛)

550

450

1)設(shè)租用甲種客車x輛,租車總費(fèi)用為y元.求出y(元)與x(輛)之間的函數(shù)表達(dá)式;

2)當(dāng)甲種客車有多少輛時,能保障所有的師生能參加秋游且租車費(fèi)用最少,最少費(fèi)用是多少元?

查看答案和解析>>

同步練習(xí)冊答案