【題目】低碳生活,綠色出行是我們倡導(dǎo)的一種生活方式,有關(guān)部門隨機(jī)調(diào)查了某單位員工上下班的交通方式,繪制了如下統(tǒng)計圖,根據(jù)統(tǒng)計圖,完成下列問題:

1)調(diào)查的總?cè)藬?shù)為   

2)補(bǔ)全條形統(tǒng)計圖;

3)該單位共有2000人,為了積極踐行低碳生活,綠色出行這種生活方式,調(diào)查后開私家車的人上下班全部改為騎自行車,則現(xiàn)在騎自行車的人數(shù)約為多少人?

【答案】(1)80;(2)見解析;(3)900人

【解析】試題分析:1)用乘公交車的人數(shù)除以所占的百分比,計算即可求出總?cè)藬?shù).

求出騎自行車的人數(shù),然后補(bǔ)全統(tǒng)計圖即可;
3用總?cè)藬?shù)乘以現(xiàn)在騎自行車的人的百分比即可.

試題解析:1)調(diào)查的總?cè)藬?shù)為:36÷45%=80人,

故答案為:80;

2)開私家車的人數(shù)m=80×25%=20

扇形統(tǒng)計圖中騎自行車所占的百分比為:110%25%45%=20%,

則騎自行車的人數(shù)為80×20%=16人,

補(bǔ)全統(tǒng)計圖如圖所示;

3)現(xiàn)在騎自行車的人數(shù)約為人.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:在平面直角坐標(biāo)系中,網(wǎng)格中每一個小正方形的邊長為1個單位長度;已知△ABC.

(1)作出△ABC關(guān)于x軸對稱的△A1B1C1 , (只畫出圖形).
(2)作出△ABC關(guān)于原點(diǎn)O成中心對稱的△A2B2C2 , (只畫出圖形),寫出B2和C2的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某縣為了落實中央的強(qiáng)基惠民工程,計劃將某村的居民自來水管道進(jìn)行改造.該工程若由甲隊單獨(dú)施工恰好在規(guī)定時間內(nèi)完成;若乙隊單獨(dú)施工,則完成工程所需天數(shù)是規(guī)定天數(shù)的1.5倍.如果由甲、乙隊先合做15,那么余下的工程由甲隊單獨(dú)完成還需5

1)這項工程的規(guī)定時間是多少天?

2)已知甲隊每天的施工費(fèi)用為6500乙隊每天的施工費(fèi)用為3500元.為了縮短工期以減少對居民用水的影響,工程指揮部最終決定該工程由甲、乙隊合做來完成.則該工程施工費(fèi)用是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰直角ABC的斜邊上取異于B,C的兩點(diǎn)E,F,使∠EAF=45°,求證:以EF,BE,CF為邊的三角形是直角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,AB15,AC13,高AD12,則ABC的周長為(  。

A42 B32 C42 32 D37 33

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A,B在反比例函數(shù)y= 的圖象上,過點(diǎn)A,B作x軸的垂線,垂足分別是M,N,射線AB交x軸于點(diǎn)C,若OM=MN=NC,四邊形AMNB的面積是3,則k的值為(

A.2
B.4
C.﹣2
D.﹣4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一個點(diǎn)從數(shù)軸上的原點(diǎn)開始,先向左移動到達(dá)點(diǎn),再向左移動 到達(dá)點(diǎn),然后向右移動到達(dá)點(diǎn)

(1)用1個單位長度表示,請你在數(shù)軸上表示出、、三點(diǎn)的位置;

(2)把點(diǎn)到點(diǎn)的距離記為,則=_______

(3)若點(diǎn)以每秒的速度向左移動,同時、點(diǎn)分別以每秒、的速度向右移動.設(shè)移動時間為秒,試探索: 的值是否會隨著的變化而改變?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用小立方體搭成一個幾何體,從正面和上面看到該幾何體的形狀圖如圖所示,搭建這樣的幾何體最多要幾個小立方體?最少要幾個小立方體?并畫出最多和最少時從左面看到的形狀圖.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在□ABCD的形外分別作等腰直角ABF和等腰直角ADE,FAB=EAD=90°,

連結(jié)AC、EF.在圖中找一個與FAE全等的三角形,并加以證明.

查看答案和解析>>

同步練習(xí)冊答案