【題目】你能求(x1)(x99+x98+x97+…+x+1)的值嗎?遇到這樣的問題,我們可以先思考一下,從簡單的情形入手.先分別計算下列各式的值:

①(x1)(x+1=x21;

②(x1)(x2+x+1=x31

③(x1)(x3+x2+x+1=x41;

由此我們可以得到:(x1)(x99+x98+x97+…+x+1=

請你利用上面的結(jié)論,再完成下面兩題的計算:

1210+29+28+…+2+1

23n+3n-1+3n-2…+3+1

【答案】;(1;(2

【解析】

根據(jù)平方差公式,立方差公式可得前2個式子的結(jié)果,利用多項式乘以多項式的方法可得出第3個式子的結(jié)果;從而總結(jié)出規(guī)律是(x-1)(x99+x98+x97+…+x+1=x100-1,根據(jù)上述結(jié)論計算下列式子即可.

1)由前面的推論即可解答;

2)根據(jù)推論即可解答;

解:根據(jù)題意:(x-1)(x+1=x2-1;
x-1)(x2+x+1=x3-1;

x-1)(x3+x2+x+1=x4-1;

故(x-1)(x99+x98+x97+…+x+1=x100-1

1)原式=

2)原式=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點A在數(shù)軸上對應(yīng)的數(shù)為a,點B在數(shù)軸上對應(yīng)的數(shù)為b,且|a+3|+|b-2|=0,A,B 之間的距離記為|AB|.請回答問題:

(1)直接寫出a,b, |AB|的值. a= ,b = , |AB|= ;

(2)設(shè)點P在數(shù)軸上對應(yīng)的數(shù)為x,當(dāng)|PA|-|PB|=2時,求x的值

(3)若點P在點A的左側(cè),M、N分別是PA、PB的中點.當(dāng)點P在點A的左側(cè)移動時,式子|PN|-|PM|的值是否發(fā)生改變?若不變,請求出其值;若發(fā)生變化,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩位同學(xué)在一次實驗中統(tǒng)計了某一結(jié)果出現(xiàn)的頻率,給出的統(tǒng)計圖如圖所示,則 符合這一結(jié)果的實驗可能是( )

A. 擲一枚正六面體的骰子,出現(xiàn)6點的概率

B. 擲一枚硬幣,出現(xiàn)正面朝上的概率

C. 任意寫出一個整數(shù),能被2整除的概率

D. 一個袋子中裝著只有顏色不同,其他都相同的兩個紅球和一個黃球,從中任意取出一個是黃球的概率

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC,PD⊥AC,PE⊥AB,PF⊥BC,PD=PE=PF.求證:∠BPC=90°+∠BAC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了加強(qiáng)公民節(jié)水意識,合理利用水資源,某市采用價格調(diào)控手段達(dá)到節(jié)約用水的目的,規(guī)定:每戶居民每月用水不超過15m3時,按基本價格收費(fèi);超過15m3時,不超過的部分仍按基本價格收費(fèi),超過的部分要加價收費(fèi),該市某戶居民今年4、5月份的用水量和水費(fèi)如表所示:

月份

用水量/m3

水費(fèi)/元

4

16

50

5

20

70


(1)求該市居民用水的兩種收費(fèi)價格;
(2)若該居民6月份交水費(fèi)80元,那么該居民這個月水量為m3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在全運(yùn)會射擊比賽的選拔賽中,運(yùn)動員甲10次射擊成績的統(tǒng)計表和扇形統(tǒng)計圖如下:

命中環(huán)數(shù)

10

9

8

7

命中次數(shù)


3

2


1)根據(jù)統(tǒng)計表(圖)中提供的信息,補(bǔ)全統(tǒng)計表及扇形統(tǒng)計圖;

2)已知乙運(yùn)動員10次射擊的平均成績?yōu)?/span>9環(huán),方差為12,如果只能選一人參加比賽,你認(rèn)為應(yīng)該派誰去?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,o為坐標(biāo)原點,A的坐標(biāo)為(,3),B的坐標(biāo)(,6).

(1)AB與坐標(biāo)軸平行,AB的長;

(2)滿足AC⊥,垂足為C,BD⊥,垂足為D:

求四邊形ACDB的面積;

ABOA、OB,△OAB的面積大于6而小于10,的取值范圍。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC繞著點O按順時針方向旋轉(zhuǎn)90°后到達(dá)△CDE的位置,下列說法中不正確的是(

A. AB⊥CD

B. AC⊥CE

C. BC⊥DE

D. C與點B是兩個三角形的對應(yīng)點

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)y= (x>0)的圖象交于A(m,6),B(n,3)兩點.
(1)求一次函數(shù)的解析式;
(2)根據(jù)圖象直接寫出kx+6﹣ >0時,x的取值范圍;
(3)若M是x軸上一點,S△MOB=S△AOB , 求點M的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案