【題目】如圖1,O為直線AB上一點,過點O作射線OC,∠AOC=30°,將一直角三角板(∠M=30°)的直角頂點放在點O處,一邊ON在射線OA上,另一邊OM與OC都在直線AB的上方.

(1)將圖1中的三角板繞點O以每秒3°的速度沿順時針方向旋轉一周.如圖2,經過t秒后,OM恰好平分∠BOC.①求t的值;②此時ON是否平分∠AOC?請說明理由;
(2)在(1)問的基礎上,若三角板在轉動的同時,射線OC也繞O點以每秒6°的速度沿順時針方向旋轉一周,如圖3,那么經過多長時間OC平分∠MON?請說明理由;
(3)在(2)問的基礎上,經過多長時間OC平分∠MOB?請畫圖并說明理由.

【答案】
(1)解:①∵∠AON+∠BOM=90°,∠COM=∠MOB,
∵∠AOC=30°,
∴∠BOC=2∠COM=150°,
∴∠COM=75°,
∴∠CON=15°,
∴∠AON=∠AOC﹣∠CON=30°﹣15°=15°,
解得:t=15°÷3°=5秒;
②是,理由如下:
∵∠CON=15°,∠AON=15°,
∴ON平分∠AOC
(2)解:15秒時OC平分∠MON,理由如下:
∵∠AON+∠BOM=90°,∠CON=∠COM,
∵∠MON=90°,
∴∠CON=∠COM=45°,
∵三角板繞點O以每秒3°的速度,射線OC也繞O點以每秒6°的速度旋轉,
設∠AON為3t,∠AOC為30°+6t,
∵∠AOC﹣∠AON=45°,
可得:6t﹣3t=15°,
解得:t=5秒
(3)解:OC平分∠MOB
∵∠AON+∠BOM=90°,∠BOC=∠COM,
∵三角板繞點O以每秒3°的速度,射線OC也繞O點以每秒6°的速度旋轉,
設∠AON為3t,∠AOC為30°+6t,
∴∠COM為 (90°﹣3t),
∵∠BOM+∠AON=90°,
可得:180°﹣(30°+6t)= (90°﹣3t),
解得:t=23.3秒;
如圖:

【解析】(1)①根據(jù)∠AON+∠BOM=90°,∠COM=∠MOB,及平角的定義∠BOC=2∠COM=150° ,故∠COM=75° ,根據(jù)角的和差得出∠CON=15°從而得到AON=∠AOC﹣∠CON=30°﹣15°=15° ,根據(jù)旋轉的速度,就可以算出t的值了;②根據(jù)∠CON=15°,∠AON=15°,即可得出ON平分∠AOC ;
(2)15秒時OC平分∠MON,理由如下:∠AON+∠BOM=90°,∠CON=∠COM,從而得出∠CON=∠COM=45°,又三角板繞點O以每秒3°的速度,射線OC也繞O點以每秒6°的速度旋轉,設∠AON為3t,∠AOC為30°+6t,根據(jù)∠AOC﹣∠AON=45°得出含t的方程,求解得出t的值 ;
( 3)根據(jù)∠AON+∠BOM=90°,∠BOC=∠COM,及三角板繞點O以每秒3°的速度,射線OC也繞O點以每秒6°的速度旋轉,故設∠AON為3t,∠AOC為30°+6t,從而得到∠COM為 (90°﹣3t),又∠BOM+∠AON=90°,從而得出含t的方程,就能解出t的值 。

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,△ABC和△AED都是等腰直角三角形,∠BAC=∠EAD=90°,點B在線段AE上,點C在線段AD上.

(1)請直接寫出線段BE與線段CD的關系: ;

(2)如圖2,將圖1中的△ABC繞點A順時針旋轉角α(0<α<360°),

①(1)中的結論是否成立?若成立,請利用圖2證明;若不成立,請說明理由;

②當AC=ED時,探究在△ABC旋轉的過程中,是否存在這樣的角α,使以A、B、C、D四點為頂點的四邊形是平行四邊形?若存在,請直接寫出角α的度數(shù);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知等邊三角形ABC中,E是AB邊上一動點(與A、B不重合),D是CB延長線上的一點,且DE=EC.
(1)當E是AB邊上中點時,如圖1,線段AE與DB的大小關系是:AEDB(填“>”,“<”或“=”)

(2)當E是AB邊上任一點時,小敏與同桌小聰討論后,認為(1)中的結論依然成立,并進行了如下解答:解:如圖2,過點E作EF∥BC,交AC于點F
(請你按照上述思路,補充完成全部解答過程)

(3)當E是線段AB延長線上任一點時,如圖3.(1)中的結論是否依然成立?若成立,請證明.若不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算及解方程:
(1)化簡:(5a2﹣ab)﹣2(3a2 ab)
(2)解方程: =1
(3)先化簡,再求值:3x2y﹣[2xy﹣2(xy﹣ x2y)+xy],其中x=3,y=﹣

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC中,點D,E,F(xiàn)分別在AB,BC,AC上,且∠ADF+∠DEC=180°,∠AFE=∠BDE.

(1)如圖1,當DE=DF時,圖1中是否存在與AB相等的線段?若存在,請找出,并加以證明;若不存在,說明理由;

(2)如圖2,當DE=kDF(其中0<k<1)時,若∠A=90°,AF=m,求BD的長(用含k,m的式子表示).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】老師在黑板上書寫了一個正確的演算過程,隨后用一張紙擋住了一個二次三項式,形式如下: ﹣3x=x2﹣5x+1
(1)求所擋的二次三項式;
(2)若x=﹣1,求所擋的二次三項式的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在四邊形OABC中,AB∥OC,BC⊥x軸于C,A(1,-1),B(3,-1),動點P從O點出發(fā),沿x軸正方向以2個單位/秒的速度運動.過P作PQ⊥OA于Q.設P點運動的時間為t秒(0 < t < 2),ΔOPQ與四邊形OABC重疊的面積為S.

(1)求經過O、A、B三點的拋物線的解析式并確定頂點M的坐標;

2)用含t的代數(shù)式表示PQ兩點的坐標;
3)將ΔOPQP點逆時針旋轉90°,是否存在t,使得ΔOPQ的頂點OQ落在拋物線上?若存在,直接寫出t的值;若不存在,請說明理由;

(4)求S與t的函數(shù)解析式;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線AB、CD、EF相交于點O,OG平分∠COF,∠1=30°,∠2=45°.求∠3的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:
(1)5a2b÷(﹣ ab)(2ab22
(2)已知x2﹣5x﹣14=0,求(x﹣1)(2x﹣1)﹣(x+1)2+1的值.

查看答案和解析>>

同步練習冊答案