【題目】如圖,正方形ABCD中,AB=OBC邊的中點(diǎn),點(diǎn)E是正方形內(nèi)一動(dòng)點(diǎn),OE=2,連接DE,將線段DE繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°DF,連接AE,CF.

(1)AE,O三點(diǎn)共線,求CF的長;

(2)求△CDF的面積的最小值.

【答案】(1)CF=3;(2).

【解析】

1)由正方形的性質(zhì)可得AB=BC=AD=CD=2,根據(jù)勾股定理可求AO=5,即AE=3,由旋轉(zhuǎn)的性質(zhì)可得DE=DF,∠EDF=90°,根據(jù)“SAS”可證△ADE≌△CDF,可得AE=CF=3

2)由△ADE≌△CDF,可得SADE=SCDF,當(dāng)OEAD時(shí),SADE的值最小,即可求△CDF的面積的最小值.

(1)由旋轉(zhuǎn)得:,,

邊的中點(diǎn),

,

中,,

,

∵四邊形是正方形,

,

,

,

,

,

,

2)由于,所以點(diǎn)可以看作是以為圓心,2為半徑的半圓上運(yùn)動(dòng),

過點(diǎn)于點(diǎn),

,

當(dāng),三點(diǎn)共線,最小,,

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為保證車輛行駛安全,現(xiàn)在公路旁設(shè)立一檢測(cè)點(diǎn)A觀測(cè)行駛的汽車是否超速.如圖,檢測(cè)點(diǎn)A到公路的距離是24米,在公路上取兩點(diǎn)B、C,使得∠ACB=30°,∠ABC=120°

(1)BC的長(結(jié)果保留根號(hào));

(2)已知該路段限速為45千米/小時(shí),若測(cè)得某汽車從BC用時(shí)2秒,這輛汽車是否超速?說明理由.(參考數(shù)據(jù):1.7,1.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O的弦AB4cm,點(diǎn)C為優(yōu)弧上的動(dòng)點(diǎn),且∠ACB30°.若弦DE經(jīng)過弦AC、BC的中點(diǎn)M、N,則DM+EN的最大值是_____cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某地有一座圓弧形拱橋,

(1)如圖1,請(qǐng)用尺規(guī)作出圓弧所在圓的圓心O;

(2)如圖2,過點(diǎn)O作OC⊥AB于點(diǎn)D,交圓弧于點(diǎn)C,CD=2.4 m.橋下水面寬度AB為7.2 m,現(xiàn)有一艘寬3 m、船艙頂部為方形并高出水面2 m的貨船要經(jīng)過拱橋,請(qǐng)通過計(jì)算說明此貨船能否順利通過這座拱橋.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把(sinα)2記作sin2α,根據(jù)圖1和圖2完成下列各題.

1sin2A1+cos2A1= sin2A2+cos2A2= ,sin2A3+cos2A3= ;

2)觀察上述等式猜想:在RtABC中,∠C=90°,總有sin2A+cos2A= ;

3)如圖2,在RtABC中證明(2)題中的猜想:

4)已知在△ABC中,∠A+∠B=90°,且sinA=,求cosA

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y1=﹣x+4,y2=x+b都與雙曲線y=交于點(diǎn)A(1,m),這兩條直線分別與x軸交于B,C兩點(diǎn).

(1)求yx之間的函數(shù)關(guān)系式;

(2)直接寫出當(dāng)x>0時(shí),不等式x+b的解集;

(3)若點(diǎn)Px軸上,連接APABC的面積分成1:3兩部分,求此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖①所示,在ABCADE中,ABAC,ADAE,∠BAC=∠DAE,且點(diǎn)B,A,D在一條直線上,連接BE,CDM,N分別為BE,CD的中點(diǎn).

1)求證:①BECD;②AMN是等腰三角形;

2)在圖①的基礎(chǔ)上,將ADE繞點(diǎn)A按順時(shí)針方向旋轉(zhuǎn)180°,其他條件不變,得到圖②所示的圖形.請(qǐng)直接寫出(1)中的兩個(gè)結(jié)論是否仍然成立;

3)在(2)的條件下,請(qǐng)你在圖②中延長ED交線段BC于點(diǎn)P.求證:PBD∽△AMN

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有一塊含30°角的直角三角板OAB的直角邊BO的長恰與另一塊等腰直角三角板ODC的斜邊OC的長相等,把這兩塊三角板放置在平面直角坐標(biāo)系中,且OB=3.

(1)若某反比例函數(shù)的圖象的一個(gè)分支恰好經(jīng)過點(diǎn)A,求這個(gè)反比例函數(shù)的解析式;

(2)若把含30°角的直角三角板繞點(diǎn)O按順時(shí)針方向旋轉(zhuǎn)后,斜邊OA恰好落在x軸上,點(diǎn)A落在點(diǎn)A′處,試求圖中陰影部分的面積.(結(jié)果保留π)

【答案】(1)反比例函數(shù)的解析式為y=;(2)S陰影=6π-.

【解析】分析:(1)根據(jù)tan30°=,求出AB,進(jìn)而求出OA,得出A的坐標(biāo),設(shè)過A的雙曲線的解析式是y=,把A的坐標(biāo)代入求出即可;(2)求出∠AOA′,根據(jù)扇形的面積公式求出扇形AOA′的面積,求出OD、DC長,求出△ODC的面積,相減即可求出答案.

本題解析:

(1)在Rt△OBA中,∠AOB=30°,OB=3

∴AB=OB·tan 30°=3.

∴點(diǎn)A的坐標(biāo)為(3,3).

設(shè)反比例函數(shù)的解析式為y= (k≠0),

∴3,∴k=9,則這個(gè)反比例函數(shù)的解析式為y=.

(2)在Rt△OBA中,∠AOB=30°,AB=3,

sin ∠AOB=,即sin 30°=,

∴OA=6.

由題意得:∠AOC=60°,S扇形AOA′=6π.

Rt△OCD中,∠DOC=45°,OC=OB=3

∴OD=OC·cos 45°=3×.

∴SODCOD2.

∴S陰影=S扇形AOA′-SODC=6π.

點(diǎn)睛:本題考查了勾股定理、待定系數(shù)法求函數(shù)解析式、特殊角的三角函數(shù)值、扇形的面積及等腰三角形的性質(zhì),本題屬于中檔題,難度不大,將不規(guī)則的圖形的面積表示成多個(gè)規(guī)則圖形的面積之和是解答本題的關(guān)鍵.

型】解答
結(jié)束】
26

【題目】矩形ABCD一條邊AD=8,將矩形ABCD折疊,使得點(diǎn)B落在CD邊上的點(diǎn)P處.

(1)如圖①,已知折痕與邊BC交于點(diǎn)O,連接AP,OP,OA.

① 求證:△OCP∽△PDA;

② 若△OCP與△PDA的面積比為1:4,求邊AB的長.

(2)如圖②,在(1)的條件下,擦去AO和OP,連接BP.動(dòng)點(diǎn)M在線段AP上(不與點(diǎn)P,A重合),動(dòng)點(diǎn)N在線段AB的延長線上,且BN=PM,連接MN交PB于點(diǎn)F,作ME⊥BP于點(diǎn)E.試問動(dòng)點(diǎn)M,N在移動(dòng)的過程中,線段EF的長度是否發(fā)生變化?若不變,求出線段EF的長度;若變化,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,CEBDE,CF平分∠DCEDB交于點(diǎn)F

1)求證:BFBC;

2)若AB4cm,AD3cm,求CF的長.

查看答案和解析>>

同步練習(xí)冊(cè)答案