【題目】如圖1,在平面直角坐標(biāo)系中,直線y=﹣5x+5與x軸,y軸分別交于A,C兩點,拋物線y=x2+bx+c經(jīng)過A,C兩點,與x軸的另一交點為B.
(1)求拋物線解析式及B點坐標(biāo);
(2)若點M為x軸下方拋物線上一動點,連接MA、MB、BC,當(dāng)點M運(yùn)動到某一位置時,四邊形AMBC面積最大,求此時點M的坐標(biāo)及四邊形AMBC的面積;
(3)如圖2,若P點是半徑為2的⊙B上一動點,連接PC、PA,當(dāng)點P運(yùn)動到某一位置時,PC+PA的值最小,請求出這個最小值,并說明理由.
【答案】(1)y=x2﹣6x+5, B(5,0);(2)當(dāng)M(3,﹣4)時,四邊形AMBC面積最大,最大面積等于18;(3)PC+PA的最小值為,理由詳見解析.
【解析】
(1)由直線y=﹣5x+5求點A、C坐標(biāo),用待定系數(shù)法求拋物線解析式,進(jìn)而求得點B坐標(biāo).
(2)從x軸把四邊形AMBC分成△ABC與△ABM;由點A、B、C坐標(biāo)求△ABC面積;設(shè)點M橫坐標(biāo)為m,過點M作x軸的垂線段MH,則能用m表示MH的長,進(jìn)而求△ABM的面積,得到△ABM面積與m的二次函數(shù)關(guān)系式,且對應(yīng)的a值小于0,配方即求得m為何值時取得最大值,進(jìn)而求點M坐標(biāo)和四邊形AMBC的面積最大值.
(3)作點D坐標(biāo)為(4,0),可得BD=1,進(jìn)而有,再加上公共角∠PBD=∠ABP,根據(jù)兩邊對應(yīng)成比例且夾角相等可證△PBD∽△ABP,得等于相似比,進(jìn)而得PD=AP,所以當(dāng)C、P、D在同一直線上時,PC+PA=PC+PD=CD最小.用兩點間距離公式即求得CD的長.
解:(1)直線y=﹣5x+5,x=0時,y=5
∴C(0,5)
y=﹣5x+5=0時,解得:x=1
∴A(1,0)
∵拋物線y=x2+bx+c經(jīng)過A,C兩點
∴ 解得:
∴拋物線解析式為y=x2﹣6x+5
當(dāng)y=x2﹣6x+5=0時,解得:x1=1,x2=5
∴B(5,0)
(2)如圖1,過點M作MH⊥x軸于點H
∵A(1,0),B(5,0),C(0,5)
∴AB=5﹣1=4,OC=5
∴S△ABC=ABOC=×4×5=10
∵點M為x軸下方拋物線上的點
∴設(shè)M(m,m2﹣6m+5)(1<m<5)
∴MH=|m2﹣6m+5|=﹣m2+6m﹣5
∴S△ABM=ABMH=×4(﹣m2+6m﹣5)=﹣2m2+12m﹣10=﹣2(m﹣3)2+8
∴S四邊形AMBC=S△ABC+S△ABM=10+[﹣2(m﹣3)2+8]=﹣2(m﹣3)2+18
∴當(dāng)m=3,即M(3,﹣4)時,四邊形AMBC面積最大,最大面積等于18
(3)如圖2,在x軸上取點D(4,0),連接PD、CD
∴BD=5﹣4=1
∵AB=4,BP=2
∴
∵∠PBD=∠ABP
∴△PBD∽△ABP
∴
∴PD=AP
∴PC+PA=PC+PD
∴當(dāng)點C、P、D在同一直線上時,PC+PA=PC+PD=CD最小
∵CD=
∴PC+PA的最小值為
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=x+4的圖象與反比例函數(shù)y=(k為常數(shù)且k≠0)的圖象交于A(﹣1,a),B兩點,與x軸交于點C.
(1)求此反比例函數(shù)的表達(dá)式;
(2)若點P在x軸上,且S△ACP=S△BOC,求點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,△ABC為等腰三角形,AB=AC=a,P點是底邊BC上的一個動點,PD∥AC,PE∥AB.
⑴用a表示四邊形ADPE的周長為 ;
⑵點P運(yùn)動到什么位置時,四邊形ADPE是菱形,請說明理由;
⑶如果△ABC不是等腰三角形(圖2),其他條件不變,點P運(yùn)動到什么位置時,四邊形ADPE是菱形(不必說明理由).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,一次函數(shù)y=﹣x+10的圖象交x軸于點A,交y軸于點B.以P(1,0)為圓心的⊙P與y軸相切,若點P以每秒2個單位的速度沿x軸向右平移,同時⊙P的半徑以每秒增加1個單位的速度不斷變大,設(shè)運(yùn)動時間為t(s)
(1)點A的坐標(biāo)為 ,點B的坐標(biāo)為 ,∠OAB= °;
(2)在運(yùn)動過程中,點P的坐標(biāo)為 ,⊙P的半徑為 (用含t的代數(shù)式表示);
(3)當(dāng)⊙P與直線AB相交于點E、F時
①如圖2,求t=時,弦EF的長;
②在運(yùn)動過程中,是否存在以點P為直角頂點的Rt△PEF,若存在,請求出t的值;若不存在,請說明理由(利用圖1解題).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在單位為1的方格紙上,△A1A2A3,△A3A4A5,△A5A6A7,…,都是斜邊在x軸上,斜邊長分別為2,4,6,…的等直角三角形,若△A1A2A3的頂點坐標(biāo)分別為A1(2,0),A2(1,1),A3(0,0),則依圖中所示規(guī)律,A2019的坐標(biāo)為( )
A.(﹣1008,0)B.(﹣1006,0)C.(2,﹣504)D.(1,505)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是的切線,切點為,是的直徑,連接交于.過點作于點,交于,連接,.
(1)求證:是的切線;
(2)求證:為的內(nèi)心;
(3)若,,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】實驗數(shù)據(jù)顯示,一般成人喝半斤低度白酒后,1.5時內(nèi)其血液中酒精含量y(毫克/百毫升)與時間(時)的關(guān)系可近似地用二次函數(shù)刻畫;1.5時后(包括1.5時)y與x可近似地用反比例函數(shù)(k>0)刻畫(如圖所示).
(1)根據(jù)上述數(shù)學(xué)模型計算:
①喝酒后幾時血液中的酒精含量達(dá)到最大值?最大值為多少?
②當(dāng)=5時,y=45.求k的值.
(2)按國家規(guī)定,車輛駕駛?cè)藛T血液中的酒精含量大于或等于20毫克/百毫升時屬于“酒后駕駛”,不能駕車上路.參照上述數(shù)學(xué)模型,假設(shè)某駕駛員晚上20:00在家喝完半斤低度白酒,第二天早上7:00能否駕車去上班?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,△ ABC 在直角坐標(biāo)系內(nèi),三個頂點的坐標(biāo)分別為A(-2,2)、B(-1,0)、C(0,1)(正方形網(wǎng)格中每個小正方形的邊長是一個單位長度).
(1)畫出△ ABC 關(guān)于 y 軸的軸對稱圖形△ A1B1C1;
(2)一點 O 為位擬中心,在網(wǎng)格內(nèi)畫出所有符合條件的△ A2B2C2,使△ A2B2C2 與△ A1B1C1 位擬,且位擬比為 2:1;
(3) △ A1B1C1 與△ A2B2C2 的面積比為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊三角形ABC的邊長為4, 點O是的中心, ∠FOG = 120°, 繞點O旋轉(zhuǎn)∠FOG,分別交線段AB、BC于D、 E兩點,連接DE,給出下列四個結(jié)論:①OD= OE;②;③四邊形ODBE的面積始終等于;④周長的最小值為6.上述結(jié)論中正確的有_________(寫出序號)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com