【題目】閱讀下面的文字后,解答問題:

有這樣一道題目:“如圖,E、D是△ABCBC邊上的兩點(diǎn),ADAE   .求證△ABE≌△ACD.請根據(jù)你的理解,在題目中的空格內(nèi),把原題補(bǔ)充完整(添加一個(gè)適當(dāng)?shù)臈l件),并寫出證明過程.

【答案】BECDBDCE(可得出BECD)或ABAC(可得出∠B=∠C)或∠B=∠C或∠BAE=∠CAD或∠BAD=∠CAE(可得出∠BAE=∠CAD)(任選其一即可),證明見解析.

【解析】

先找出證△ABE≌△ACD的已知條件,然后根據(jù)全等三角形的判定定理添加條件即可.

解:∵ADAE

∴∠ADE=∠AED

∴當(dāng)BECDBDCE(可得出BECD)或ABAC(可得出∠B=∠C)或∠B=∠C或∠BAE=∠CAD或∠BAD=∠CAE(可得出∠BAE=∠CAD)時(shí),

∴△ABE≌△ACD

故答案為:BECDBDCE(可得出BECD)或ABAC(可得出∠B=∠C)或∠B=∠C或∠BAE=∠CAD或∠BAD=∠CAE(可得出∠BAE=∠CAD)(任選其一即可).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖16,拋物線y=ax2+3ax+c(a>0)與y軸交于點(diǎn)C,與x軸交于A,B兩點(diǎn),點(diǎn)A在點(diǎn)B左側(cè).點(diǎn)B的坐標(biāo)為(1,0),OC=3OB.

(1)求拋物線的解析式.

(2)若點(diǎn)D是線段AC下方拋物線上的動(dòng)點(diǎn),求四邊形ABCD面積的最大值.

(3)若點(diǎn)E在x軸上,點(diǎn)P在拋物線上.是否存在以A,C,E,P為頂點(diǎn)且以AC為一邊的平行四邊形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,點(diǎn)E、FBCCD的中點(diǎn),且AE⊥BCAF⊥CD

1)求證:AB=AD

2)請你探究∠EAF,∠BAE,∠DAF之間有什么數(shù)量關(guān)系?并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,lA、lB分別表示A步行與B騎車在同一路上行駛的路程S與時(shí)間t的關(guān)系.

(1)B出發(fā)時(shí)與A相距______千米;

(2)走了一段路后,自行車發(fā)生故障,進(jìn)行修理,所用的時(shí)間是______小時(shí);

(3)B再次出發(fā)后______小時(shí)與A相遇;

(4)求出A行走的路程S與時(shí)間t的函數(shù)關(guān)系式(寫出過程);

(5)B的自行車不發(fā)生故障,保持出發(fā)時(shí)的速度前進(jìn),幾小時(shí)與A相遇?在圖中表示出這個(gè)相遇點(diǎn)C.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(定義)配方法是指將一個(gè)式子或一個(gè)式子的某一部分通過恒等變形化為完全平方式或幾個(gè)完全平

方式的和,這種方法稱之為配方法,例如:可將多項(xiàng)式通過橫檔變形化為的形式,這個(gè)變形過程中應(yīng)用了配方法.

1)(理解)對于多項(xiàng)式,當(dāng)x=____________時(shí),它的最小值為______________.

2)(應(yīng)用)若,求的值.

3)(拓展)的三邊,且有.

①若c為整數(shù),求c的值.

②直接寫出這個(gè)三角形的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工廠甲、乙兩個(gè)部門各有員工400人,為了解這兩個(gè)部門員工的生產(chǎn)技能情況,進(jìn)行了抽樣調(diào)查,過程如下,請補(bǔ)充完整.

收集數(shù)據(jù)

從甲、乙兩個(gè)部門各隨機(jī)抽取20名員工,進(jìn)行了生產(chǎn)技能測試,測試成績(百分制)如下:

甲 78 86 74 81 75 76 87 70 75 90

75 79 81 70 74 80 86 69 83 77

乙 93 73 88 81 72 81 94 83 77 83

80 81 70 81 73 78 82 80 70 40

整理、描述數(shù)據(jù)

按如下分?jǐn)?shù)段整理、描述這兩組樣本數(shù)據(jù):

成績

人數(shù)

部門

40≤x≤49

50≤x≤59

60≤x≤69

70≤x≤79

80≤x≤89

90≤x≤100

0

0

1

11

7

1

(說明:成績80分及以上為生產(chǎn)技能優(yōu)秀,70--79分為生產(chǎn)技能良好,60--69分為生產(chǎn)技能合格,60分以下為生產(chǎn)技能不合格)

分析數(shù)據(jù)

兩組樣本數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)如下表所示:

部門

平均數(shù)

中位數(shù)

眾數(shù)

78.3

77.5

75

78

80.5

81

得出結(jié)論:

.估計(jì)乙部門生產(chǎn)技能優(yōu)秀的員工人數(shù)為____________;

.可以推斷出_____________部門員工的生產(chǎn)技能水平較高,理由為_____________.(至少從兩個(gè)不同的角度說明推斷的合理性)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,AD是△ABC的角平分線,DE、DF分別是△ABD和△ACD的高。求證:AD垂直平分EF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩同學(xué)從A地出發(fā),騎自行車在同一條路上行駛到B地,他們離出發(fā)地的距離s(千米)和行駛時(shí)間t(小時(shí))之間的函數(shù)關(guān)系圖象如圖所示,根據(jù)圖中提供的信息,有下列說法:

1)他們都行駛了18千米;

2)甲在途中停留了0.5小時(shí);

3)乙比甲晚出發(fā)了0.5小時(shí);

4)相遇后,甲的速度小于乙的速度;

5)甲、乙兩人同時(shí)到達(dá)目的地

其中符合圖象描述的說法有(

A. 2個(gè)B. 3個(gè)C. 4個(gè)D. 5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一只不透明的袋子中裝有個(gè)相同小球,分別標(biāo)有不等的自然數(shù)、、,小麗每次從袋中同時(shí)摸出個(gè)小球,并計(jì)算摸出的這個(gè)小球上數(shù)字之和,記錄后將小球放回袋中攪勻,進(jìn)行重復(fù)實(shí)驗(yàn).實(shí)驗(yàn)數(shù)據(jù)如下表:

摸球總次數(shù)

和為出現(xiàn)的頻數(shù)

和為出現(xiàn)的頻率

如果實(shí)驗(yàn)繼續(xù)進(jìn)行下去,出現(xiàn)和為的頻率將穩(wěn)定在它的概率附近.試估計(jì)出現(xiàn)和為的概率;

根據(jù)中結(jié)論,求出自然數(shù)的值.

查看答案和解析>>

同步練習(xí)冊答案