A. | (1,1) | B. | (1,2) | C. | ($\sqrt{2}$,$\sqrt{2}$) | D. | (2,1) |
分析 連接CB,根據(jù)位似變換的性質(zhì)得到A為OC的中點,根據(jù)平行線的性質(zhì)得到OB=OD,根據(jù)等腰直角三角形的性質(zhì)計算即可.
解答 解:連接CB,
∵△OAB與△OCD是以點O為位似中心的位似圖形,相似比為1:2,
∴A為OC的中點,
∵∠OCD=90°,
∴∠OAB=90°,
∴AB∥CD,
∴OB=OD,
∵∠OCD=90°,CO=CD,
∴CB⊥OD,OB=BC=1,
∴點C的坐標為(1,1),
故選:A.
點評 本題考查的是位似變換的性質(zhì)、等腰直角三角形的性質(zhì),兩個圖形不僅是相似圖形,而且對應(yīng)頂點的連線相交于一點,對應(yīng)邊互相平行,那么這樣的兩個圖形叫做位似圖形.
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
用水量 | 單價 |
0<x≤22 | a |
剩余部分 | a+1.1 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{2}{3}$ | C. | 1 | D. | $\frac{3}{2}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 0個 | B. | 1個 | C. | 2個 | D. | 3個 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 2+$\sqrt{5}$=2$\sqrt{5}$ | B. | $\sqrt{6}$÷$\sqrt{2}$=$\sqrt{3}$ | C. | (-2a2)3=-6a6 | D. | (x+1)2=x2+1 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com