6.若mx5ya+1與$\frac{2}{3}$xny4(其中m為系數(shù))的和等于0,則mn-|-a|=-$\frac{19}{3}$.

分析 根據(jù)合并同類項(xiàng)系數(shù)相加字母及指數(shù)不變,可得m、n、a的值,根據(jù)有理數(shù)的運(yùn)算,可得答案.

解答 解:由mx5ya+1與$\frac{2}{3}$xny4(其中m為系數(shù))的和等于0,得
m=-$\frac{2}{3}$,n=5,a+1=4.
解得a=3.
mn-|-a|=-$\frac{2}{3}$×5-3=$\frac{-19}{3}$,
故答案為:-$\frac{19}{3}$.

點(diǎn)評(píng) 本題考查了合并同類項(xiàng),利用合并同類項(xiàng)系數(shù)相加字母及指數(shù)不變得出m、n、a的值是解題關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

16.先化簡(jiǎn),再求值:$\frac{a-3}{2a-4}$÷($\frac{5}{a-2}$-a-2),其中x=$\sqrt{5}$-3.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

17.計(jì)算:
(1)計(jì)算:$\sqrt{25}$-$\root{3}{-27}$+$\sqrt{\frac{1}{4}}$-|1-$\sqrt{3}$|;            
(2)求x的值:16(x+1)2=25.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

14.如圖,已知點(diǎn)B在線段AC上,點(diǎn)E在線段BD上,∠ABD=∠DBC,AB=DB,EB=CB,M,N分別是AE,CD的中點(diǎn),現(xiàn)有如下結(jié)論:①∠ABD=∠BDN;②MB=NB;③MB⊥NB;④S△ABM=S△BCN,其中正確的結(jié)論是②③④(只填序號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

1.若用初中數(shù)學(xué)課本上使用的科學(xué)計(jì)算器進(jìn)行計(jì)算,則以下按鍵的結(jié)果為-1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.下列因式分解中,正確的個(gè)數(shù)為( 。
①x3+2xy+x=x(x2+2y);
②x2+4x+4=(x+2)2;
③-x2+y2=(x+y)(x-y);
④ax2-7ax+6a=a(x-1)(x-6);
⑤-2x2y+12xy-18y=-2y(x-3)2
A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

18.如圖,在△ABC中,∠BAC=90°,AD⊥BC于D,AC+CD=BD,若CD=1,則BD=3.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

15.如圖,已知,在平面直角坐標(biāo)系xOy中,點(diǎn)A在x軸負(fù)半軸上,點(diǎn)B在y軸正半軸上,OA=OB,函數(shù)y=-$\frac{8}{x}$的圖象與線段AB交于M點(diǎn),且AM=BM,過(guò)點(diǎn)M作MC⊥x軸于點(diǎn)C,MD⊥y軸于點(diǎn)D.
(1)求證:MC=MD;
(2)求點(diǎn)M的坐標(biāo);
(3)求直線AB的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

16.在平面直角坐標(biāo)系中,若點(diǎn)P(3,a)和點(diǎn)Q(b,-2)關(guān)于x軸對(duì)稱,則a+b的值為5.

查看答案和解析>>

同步練習(xí)冊(cè)答案