【題目】如圖,拋物線 與X軸交于點(diǎn)A、B,把拋物線在X軸及其下方的部分記作,將向左平移得到,與X軸交于點(diǎn)B、D,若直線與、共有3個(gè)不同的交點(diǎn),則m取值范圍是( )
A. <m< B. <m< C. <m< D. <m<
【答案】A
【解析】
首先求出點(diǎn)A和點(diǎn)B的坐標(biāo),然后求出C2解析式,分別求出直線y=x+m與拋物線C2相切時(shí)m的值以及直線y=x+m過點(diǎn)B時(shí)m的值,結(jié)合圖形即可得到答案.
解:∵拋物線y=與x軸交于點(diǎn)A、B
∴B(5,0),A(9,0)
∴拋物線向左平移4個(gè)單位長(zhǎng)度
∴平移后解析式y=(x-3)2-2
當(dāng)直線y=x+m過B點(diǎn),有2個(gè)交點(diǎn)
∴0=+m
m=-
當(dāng)直線y=x+m與拋物線C2相切時(shí),有2個(gè)交點(diǎn)
∴x+m=(x-3)2-2
x2-7x+5-2m=0
∵相切
∴△=49-20+8m=0
∴m=-
如圖
∵若直線y=x+m與C1、C2共有3個(gè)不同的交點(diǎn),
∴<m<
故選:A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在⊙O中,AB是直徑,CD是弦,AB⊥CD,垂足為E,連結(jié)CO,AD,∠BAD=20°,則下列說(shuō)法中正確的是( )
A. ∠BOC=2∠BAD B. CE=EO C. ∠OCE=40° D. AD=2OB
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,矩形中,,,點(diǎn)是邊上的一動(dòng)點(diǎn)(點(diǎn)與、點(diǎn)不重合),四邊形沿折疊得邊形,延長(zhǎng)交于點(diǎn).
圖① 圖②
(1)求證:;
(2)如圖②,若點(diǎn)恰好在的延長(zhǎng)線上時(shí),試求出的長(zhǎng)度;
(3)當(dāng)時(shí),求證:是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖(1),在矩形中,把、分別翻折,使點(diǎn)、分別落在對(duì)角線上的點(diǎn)、處,折痕分別為、.
(1)求證:.
(2)請(qǐng)連接、,證明四邊形是平行四邊形
(3)、是矩形的邊、上的兩點(diǎn),連結(jié)、、,如圖(2)所示,若,.且,,求的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)的圖象經(jīng)過點(diǎn),且與正比例函數(shù)的圖象交于點(diǎn),點(diǎn)的橫坐標(biāo)是.
(1)求一次函數(shù)的函數(shù)解析式;
(2)根據(jù)圖象,寫出當(dāng)時(shí),自變量的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在全民讀書月活動(dòng)中,某校隨機(jī)調(diào)查了部分同學(xué),本學(xué)期計(jì)劃購(gòu)買課外書的費(fèi)用情況,并將結(jié)果繪制成如圖所示的統(tǒng)計(jì)圖.根據(jù)相關(guān)信息,解答下列問題.
(1)這次調(diào)查獲取的樣本容量是 .(直接寫出結(jié)果)
(2)這次調(diào)查獲取的樣本數(shù)據(jù)的眾數(shù)是 ,中位數(shù)是 .(直接寫出結(jié)果)
(3)若該校共有1000名學(xué)生,根據(jù)樣本數(shù)據(jù),估計(jì)該校本學(xué)期計(jì)劃購(gòu)買課外書的總花費(fèi).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知函數(shù)與的圖像在第一象限交于點(diǎn)A(m,y1),點(diǎn)B(m+1,y2)在的圖像上,且點(diǎn)B在以O 點(diǎn)為圓心,OA為半徑的⊙O上,則k的值為( ).
A. B. 1 C. D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問題提出:某物業(yè)公司接收管理某小區(qū)后,準(zhǔn)備進(jìn)行綠化建設(shè),現(xiàn)要將一塊四邊形的空地(如圖5,四邊形ABCD)鋪上草皮,但由于年代久遠(yuǎn),小區(qū)規(guī)劃書上該空地的面積數(shù)據(jù)看不清了,僅僅留下兩條對(duì)角線AC,BD的長(zhǎng)度分別為20cm,30cm及夾角∠AOB為60°,你能利用這些數(shù)據(jù),幫助物業(yè)人員求出這塊空地的面積嗎?
問題顯然,要求四邊形ABCD的面積,只要求出△ABD與△BCD(也可以是△ABC與△ACD)的面積,再相加就可以了.
建立模型:我們先來(lái)解決較簡(jiǎn)單的三角形的情況:
如圖1,△ABC中,O為BC上任意一點(diǎn)(不與B,C兩點(diǎn)重合),連接OA,OA=a,BC=b,∠AOB=α(α為OA與BC所夾較小的角),試用a,b,α表示△ABC的面積.
解:如圖2,作AM⊥BC于點(diǎn)M,
∴△AOM為直角三角形.
又∵∠AOB=α,∴sinα=即AM=OAsinα
∴△ABC的面積=BCAM=BCOAsinα=absinα.
問題解決:請(qǐng)你利用上面的方法,解決物業(yè)公司的問題.
如圖3,四邊形ABCD中,O為對(duì)角線AC,BD的交點(diǎn),已知AC=20m,BD=30m,∠AOB=60°,求四邊形ABCD的面積.(寫出輔助線作法和必要的解答過程)
新建模型:若四邊形ABCD中,O為對(duì)角線AC,BD的交點(diǎn),已知AC=a,BD=b,∠AOB=α(α為OA與BC所夾較小的角),直接寫出四邊形ABCD的面積= .
模型應(yīng)用:如圖4,四邊形ABCD中,AB+CD=BC,∠ABC=∠BCD=60°,已知AC=a,則四邊形ABCD的面積為多少?(“新建模型”中的結(jié)論可直接利用)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,BC=2,∠BAC=30°,斜邊AB的兩個(gè)端點(diǎn)分別在相互垂直的射線OM、ON上滑動(dòng),下列結(jié)論:
①若C、O兩點(diǎn)關(guān)于AB對(duì)稱,則OA=2;
②C、O兩點(diǎn)距離的最大值為4;
③若AB平分CO,則AB⊥CO;
④斜邊AB的中點(diǎn)D運(yùn)動(dòng)路徑的長(zhǎng)為;
其中正確的是_____(把你認(rèn)為正確結(jié)論的序號(hào)都填上).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com