分析 (1)可以證明△BAD≌△CAE,得到∠B=∠ACE,證明∠ACB=45°,即可解決問題.
(2)證明△BAD≌△CAE,得到∠B=∠ACE,β=∠ABC+∠ACB,即可解決問題.
(3)證明△BAD≌△CAE,得到∠ABD=∠ACE,借助三角形外角性質(zhì)即可解決問題.
解答 解:(1)如圖1,∵∠BAC=∠DAE,
∴∠BAD=∠CAE;
在△BAD與△CAE中,$\left\{\begin{array}{l}{AB=AC}\\{∠BAD=∠CAE}\\{AD=AE}\end{array}\right.$,
∴△BAD≌△CAE(SAS),
∴∠B=∠ACE,
∴∠BCE=∠ACB+∠ACE=90°,
故答案為90.
(2)如圖2,α+β=180°;理由如下:
∵∠BAC=∠DAE,
∴∠BAD=∠CAE;
在△BAD與△CAE中,$\left\{\begin{array}{l}{AB=AC}\\{∠BAD=∠CAE}\\{AD=AE}\end{array}\right.$,
∴△BAD≌△CAE(SAS),
∴∠B=∠ACE,β=∠ABC+∠ACB,
∴α+β=180°.
(3)α=β.理由如下:
∵∠DAE=∠BAC,
∴∠DAB=∠EAC;在△BAD與△CAE中,$\left\{\begin{array}{l}{AB=AC}\\{∠BAD=∠CAE}\\{AD=AE}\end{array}\right.$,
∴△BAD≌△CAE(SAS),
∴∠B=∠ACE,
∴∠ABD=∠ACE;而∠ABD=∠ACB+α,β=∠ACE-∠ACB,
∴β=∠ACB+α-∠ACB,
∴α=β.
點評 該題主要考查了等腰直角三角形的性質(zhì)、全等三角形的判定及其性質(zhì)等幾何知識點及其應(yīng)用問題;應(yīng)牢固掌握等腰直角三角形的性質(zhì)、全等三角形的判定及其性質(zhì)等幾何知識點.
科目:初中數(shù)學 來源: 題型:選擇題
A. | (2,-1) | B. | (1,2) | C. | (-1,2) | D. | (-2,1) |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com