科目: 來源: 題型:
【題目】為了測量大樓頂上(居中)避雷針BC的長度,在地面上點A處測得避雷針底部B和頂部C的仰角分別為55°58′和57°,已知點A與樓底中間部位D的距離約為80米,求避雷針BC的長度.(參考數(shù)據(jù):sin55°58′≈0.83,cos55°58′≈0.56,tan55°58′≈1.48,sin57°≈0.84,tan57°≈1.54)
查看答案和解析>>
科目: 來源: 題型:
【題目】在Rt△ABC中,∠C=90°,AC=2,BC=4,點D、E分別是邊BC、AB的中點,將△BDE繞著點B旋轉(zhuǎn),點D、E旋轉(zhuǎn)后的對應(yīng)點分別為點D′、E′,當(dāng)直線D′E′經(jīng)過點A時,線段CD′的長為_____.
查看答案和解析>>
科目: 來源: 題型:
【題目】我們定義:有一組鄰邊相等且有一組對角互補的凸四邊形叫做等補四邊形
(1)概念理解
①根據(jù)上述定義舉一個等補四邊形的例子:
②如圖1,四邊形ABCD中,對角線BD平分∠ABC,∠A+∠C=180°,求證:四邊形ABCD是等補四邊形
(2)性質(zhì)探究:
③小明在探究時發(fā)現(xiàn),由于等補四邊形有一組對角互補,可得等補四邊形的四個頂點共圓,如圖2,等補四邊形ABCD內(nèi)接于⊙O,AB=AD,則∠ACD ∠ACB(填“>”“<”或“=“);
④若將兩條相等的鄰邊叫做等補四邊形的“等邊”,等邊所夾的角叫做“等邊角”,它所對的角叫做“等邊補角”連接它們頂點的對角線叫做“等補對角線”,請用語言表述③中結(jié)論:
(3)問題解決
在等補四邊形ABCD中,AB=BC=2,等邊角∠ABC=120°,等補對角線BD與等邊垂直,求CD的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知拋物線y=a(x﹣m)2+2m(m≠0)經(jīng)過原點,其頂點為P,與x軸的另一交點為A.
(1)P點坐標(biāo)為 ,A點坐標(biāo)為 ;(用含m的代數(shù)式表示)
(2)求出a,m之間的關(guān)系式;
(3)當(dāng)m>0時,若拋物線y=a(x﹣m)2+2m向下平移m個單位長度后經(jīng)過點(1,1),求此拋物線的表達式;
(4)若拋物線y=a(x﹣m)2+2m向下平移|m|個單位長度后與x軸所截的線段長,與平移前相比有什么變化?請直接寫出結(jié)果.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點C在半圓上,點D在圓外,DE⊥AB于點E交AC于點F,且DF=CD
(1)求證:CD是⊙O的切線;
(2)若點F是AC的中點,DF=2EF=2,求⊙O半徑.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖①是釣魚傘,為遮擋不同方向的陽光,釣魚傘可以在撐桿AN上的點O處彎折并旋轉(zhuǎn)任意角,圖②是釣魚傘直立時的示意圖,當(dāng)傘完全撐開時,傘骨AB,AC與水平方向的夾角∠ABC=∠ACB=30°,傘骨AB與AC水平方向的最大距離BC=2m,BC與AN交于點M,撐桿AN=2.2m,固定點O到地面的距離ON=1.6m.
(1)如圖②,當(dāng)傘完全撐開并直立時,求點B到地面的距離.
(2)某日某時,為了增加遮擋斜射陽光的面積,將釣魚傘傾斜與鉛垂線HN成30°夾角,如圖③.
①求此時點B到地面的距離;
②若斜射陽光與BC所在直線垂直時,求BC在水平地面上投影的長度約是多少.(說明:≈1.732,結(jié)果精確到0.1m)
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,△OA1B1是等邊三角形,點B1的坐標(biāo)是(2,0),反比例函數(shù)y=的圖象經(jīng)過點A1.
(1)求反比例函數(shù)的解析式.
(2)如圖,以B1為頂點作等邊三角形B1A2B2,使點B2在x軸上,點A2在反比例函數(shù)y=的圖象上.若要使點B2在反比例函數(shù)y=的圖象上,需將△B1A2B2向上平移多少個單位長度?
查看答案和解析>>
科目: 來源: 題型:
【題目】寒假中,某校七年級開展“閱讀經(jīng)典,讀一本好書”的活動.為了解學(xué)生閱讀情況,從全年級學(xué)生中隨機抽取了部分學(xué)生調(diào)查讀書種類情況,并進行統(tǒng)計分析,繪制了如下不完整的統(tǒng)計圖表:
讀書種類情況統(tǒng)計表
種類 | 頻數(shù) | 百分比 |
A.科普類 | a | 32% |
B.文學(xué)類 | 20 | 40% |
C.藝術(shù)類 | 8 | b |
D.其他類 | 6 | 12% |
請根據(jù)以上信息,解答下列問題:
(1)填空:a= ,b= ,并補全條形統(tǒng)計圖;
(2)若繪制“閱讀情況扇形統(tǒng)計圖”,則“藝術(shù)類”所對應(yīng)扇形的圓心角度數(shù)為 °;
(3)若該校七年級共有800人,請估計全年級在本次活動中讀書種類為“藝術(shù)類”的學(xué)生人數(shù).
查看答案和解析>>
科目: 來源: 題型:
【題目】課外活動時,甲、乙、丙、丁四名同學(xué)相約進行一次掰手腕比賽.
(1)若由甲挑一名同學(xué)進行第一場比賽,選中乙的概率是 ;
(2)若隨機確定兩名同學(xué)進行第一場比賽,請用樹狀圖法或列表法求恰好是甲、乙兩位同學(xué)的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com