7.已知函數(shù)$f(x)=lnx+\frac{1}{2}{x^2}-ax+1$,下列結(jié)論中錯誤的是( 。
A.當(dāng)a=2時,x=1是f(x)的一個極值點(diǎn)B.當(dāng)-2<a<2時,函數(shù)f(x)無極值
C.當(dāng)a>2時,f(x)的極小值小于0D.?a∈R,f(x)必有零點(diǎn)

分析 根據(jù)函數(shù)的單調(diào)性以及a的范圍分別對各個選項(xiàng)進(jìn)行判斷即可.

解答 解:(1)a=2時,f(x)=lnx+$\frac{1}{2}$x2-2x+1,
f′(x)=$\frac{{(x-1)}^{2}}{x}$≥0,f(x)遞增,無極值點(diǎn),
故A錯誤;
(2)f(x)的定義域是(0,+∞),
f′(x)=$\frac{1}{x}$+x-a≥2-a,
故-2<a<2時,f′(x)>0,
f(x)在(0,+∞)遞增,函數(shù)無極值,
故B正確;
(3)a>2時,f′(x)=$\frac{{x}^{2}-ax+1}{x}$,
令g(x)=x2-ax+1,△=a2-4>0,
x1=$\frac{a-\sqrt{{a}^{2}-4}}{2}$>0,x2=$\frac{a+\sqrt{{a}^{2}-4}}{2}$,
故f(x)在(0,$\frac{a-\sqrt{{a}^{2}-4}}{2}$)遞增,在( $\frac{a-\sqrt{{a}^{2}-4}}{2}$,$\frac{a+\sqrt{{a}^{2}-4}}{2}$)遞減,在( $\frac{a+\sqrt{{a}^{2}-4}}{2}$,+∞)遞增;
故f(x)的極小值是f( $\frac{a+\sqrt{{a}^{2}-4}}{2}$)=ln $\frac{a+\sqrt{{a}^{2}-4}}{2}$-$\frac{{a}^{2}}{4}$-$\frac{a\sqrt{{a}^{2}-4}}{4}$+$\frac{1}{2}$<lna-$\frac{{a}^{2}}{2}$+$\frac{1}{2}$,
令h(a)=lna-$\frac{{a}^{2}}{2}$+$\frac{1}{2}$,(a>2),h′(a)=$\frac{1}{a}$-a<0,
故h(a)在(2,+∞)遞減,h(a)<h(2)=ln2-$\frac{3}{2}$<0,
故a>2時,f(x)的極小值小于0,
故C正確;
(4)x→0時,f(x)→-∞,
x→+∞時,f(x)→+∞,
顯然f(x)有零點(diǎn),
故D正確;
故選:A.

點(diǎn)評 本題考查了函數(shù)的單調(diào)性、極值問題,考查導(dǎo)數(shù)的應(yīng)用以及分類討論思想,是一道中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.如圖所示,網(wǎng)格紙上小正方形的邊長為$\frac{1}{2}$,粗實(shí)線及粗虛線畫出的是某幾何體的三視圖,則兩個這樣的幾何體拼接而成的幾何體表面積最小值為( 。
A.5+2$\sqrt{2}$B.6+2$\sqrt{2}$C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,四棱錐P-ABCD的底面ABCD是平行四邊形,AD=2,AB=1,∠ABC=60°,PA⊥面ABCD,設(shè)E為PC中點(diǎn),點(diǎn)F在線段PD上,且PF=2FD.
(1)求證:BE∥平面ACF;
(2)設(shè)異面直線$\overrightarrow{BE}$與$\overrightarrow{CF}$的夾角為θ,若$cosθ=\frac{5}{11}$,求PA的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知f(x)=asin(πx+α)+bcos(πx-β),其中α,β,a,b均為非零實(shí)數(shù),若f(2016)=-1,則f(2017)=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在平面直角坐標(biāo)系xOy中,橢圓Ω:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的離心率為$\frac{1}{2}$,拋物線y2=-8x的焦點(diǎn)是橢圓Ω的一個頂點(diǎn).
(1)求橢圓Ω的標(biāo)準(zhǔn)方程;
(2)直線l:y=kx+m(m≠0)與橢圓Ω相交于A(x1,y1),B(x2,y2)兩點(diǎn),且3x1x2+4y1y2=0,證明:△AOB的面積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.設(shè)$\overrightarrow{a}$=(2cosx+2$\sqrt{3}$sinx,1),$\overrightarrow$=(cosx,-y)滿足$\overrightarrow{a}$•$\overrightarrow$=0,y=f(x)
(1)求函數(shù)f(x)的最值;
(2)已知△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,若f(x)的最大值恰好是f($\frac{A}{2}$),當(dāng)a=2時,求b+c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.關(guān)于復(fù)數(shù)Z=$\frac{2}{-1+i}$的四個命題:
p1:|Z|=2
p2:Z2=2i
p3:Z的共軛復(fù)數(shù)為1+i
p4:Z的虛部為-1.
其中的真命題為( 。
A.p2,p3B.p1,p2C.p2,p4D.p3,p4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.設(shè)f(x)=kx-$\frac{k}{x}$-2lnx.
(1)若f(x)在其定義域內(nèi)為單調(diào)增函數(shù),求k的取值范圍;
(2)求f(x)的單調(diào)區(qū)間及存在極值的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的漸近線方程為3x±4y=0,右焦點(diǎn)為(5,0),則雙曲線C的方程為( 。
A.$\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{4}$=1B.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{3}$=1C.$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1D.$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1

查看答案和解析>>

同步練習(xí)冊答案