解下列不等式
(1)x2-5x>6;
(2)-
1
2
x2+3x-5>0.
考點:一元二次不等式的解法
專題:不等式的解法及應用
分析:(1)通過因式分解,利用一元二次不等式的解法即可得出.
(2)通過配方利用實數(shù)的性質即可得出.
解答: 解:(1)x2-5x>6化為x2-5x-6>0,
因式分解為(x-6)(x+1)>0,
解得x>6或x<-1,
因此不等式的解集為{x|x>6或x<-1};
(2)-
1
2
x2+3x-5>0化為x2-6x+10<0,即(x-3)2+1<0.
∵(x-1)2≥0,∴(x-1)2+1≥1.
∴不等式的解集為∅.
點評:本題考查了因式分解、一元二次不等式的解法、配方法、實數(shù)的性質等基礎知識與基本技能方法,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在等比數(shù)列{an}中,a4=8a1,則公比q的值為( 。
A、2B、3C、4D、8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足an•an+1=2•3n-1,n=1,2,3…,a1=1,
(1)求證:n≥2時,總有
an+1
an-1
=3;
(2)數(shù)列{bn}滿足bn=
log3an ,  n為奇數(shù)
an ,  n為偶數(shù)
,求{bn}的前2n項和S2n

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知實數(shù)a≠0,函數(shù)f(x)=ax(x-2)2(x∈R)有極大值32,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知在△ABC中,角A、B、C的對邊分別為a,b,c,且滿足條件:a(sinA-sinC)+csinC=bsinB.
(Ⅰ)求角B的大;
(Ⅱ)求函數(shù)f(x)=sinx•cos(x+B)+
3
4
(x∈[0,
π
2
])的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若cos(π+α)=
4
5
,則sin(
π
2
-2α)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

從大小相同,標號分別為1,2,3,4,6的五個球中任取三個,則這三個球標號的乘積是4的倍數(shù)的概率為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知平面向量
a
=(1,2),
b
=(2,-m),且
a
b
,則
a
+
b
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義在R上的函數(shù)f(x-1)的對稱中心為(1,0),且f(x+2)=-f(x),當x∈(0,1]時,f(x)=2x-1,則f(x)在閉區(qū)間[-2014,2014]上的零點個數(shù)為
 

查看答案和解析>>

同步練習冊答案