16.已知離心率為2的雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的兩條漸近線與拋物線y2=2px(p>0)的準線交于A,B兩點,O為坐標原點,若${S_{△AOB}}=\sqrt{3}$,則p的值為2.

分析 求出雙曲線的漸近線方程與拋物線y2=2px(p>0)的準線方程,進而求出A,B兩點的坐標,再由雙曲線的離心率為2,△AOB的面積為$\sqrt{3}$,列出方程,由此方程求出p的值.

解答 解:∵雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$,
∴雙曲線的漸近線方程是y=±$\frac{a}$x,
又拋物線y2=2px(p>0)的準線方程是x=-$\frac{p}{2}$,
故A,B兩點的縱坐標分別是y=±$\frac{pb}{2a}$,
又由雙曲線的離心率為2,所以$\frac{c}{a}$=2,則$\frac{a}$=$\sqrt{3}$,
A,B兩點的縱坐標分別是y=±$\frac{\sqrt{3}p}{2}$,
又△AOB的面積為$\sqrt{3}$,x軸是角AOB的角平分線,
∴$\frac{1}{2}$×$\sqrt{3}$p×$\frac{p}{2}$=$\sqrt{3}$,得p=2.
故答案為2.

點評 本題考查圓錐曲線的共同特征,解題的關鍵是求出雙曲線的漸近線方程,解出A,B兩點的坐標,列出三角形的面積與離心率的關系也是本題的解題關鍵,有一定的運算量,做題時要嚴謹,防運算出錯.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

6.函數(shù)f(x)=$\frac{1+lnx}{x}$.
(Ⅰ)判斷f(x)的單調(diào)性,并求f(x)的極值;
(Ⅱ)求證:當x≥1時,$\frac{(x+1)(1+lnx)}{x}$≥2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知在△ABC中,角A,B,C所對的邊分別為a,b,c,向量$\overrightarrow{m}$=(a+b,$\sqrt{3}$a-c),$\overrightarrow{n}$=(sinC,sinA-sinB),且$\overrightarrow{m}$∥$\overrightarrow{n}$
(1)求角B的大小
(2)若A=$\frac{π}{6}$,角B的平分線與AC邊交于點D,且BD=2,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.設變量x,y滿足約束條件$\left\{\begin{array}{l}2x-y-2≤0\\ 2x+y-2≥0\\ x+2y-4≤0\end{array}\right.$,則x2+y2的最小值為( 。
A.0B.$\frac{4}{5}$C.1D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知直線x-y+2=0與圓C:(x-3)2+(y-3)2=4(圓心為C)交于點A,B,則∠ACB的大小為( 。
A.30°B.60°C.90°D.120°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.在等差數(shù)列{an}中,已知a5+a10=12,則3a7+a9等于( 。
A.30B.24C.18D.12

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.在遂寧市中央商務區(qū)的街道,有一中年人吆喝“送錢”,只見他手拿一黑色小布袋,袋中有3只黃色、2只白色的乒乓球(其體積,質(zhì)地完全相同),旁邊立著一 塊小黑板寫道:
摸球方法:從袋中隨機摸出3個球,若摸得統(tǒng)一顏色的3個球,攤主送個摸球者5元錢;若摸得非同一顏色的3個球.摸球者付給攤主1元錢.
(1)摸出的3個球中至少有1個白球的概率是多少?
(2)假定一天中有100人次摸獎,試從概率的角度估算一下這個攤主一個月(按30天計)能賺多少錢?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知向量$\overrightarrow{a}$=(2m+1,3,m-1),$\overrightarrow$=(2,m,2),且$\overrightarrow{a}$∥$\overrightarrow$,則實數(shù)m的值等于-2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.在平面直角坐標系xOy中,已知經(jīng)過原點的圓C的圓心在x軸正半軸上,且圓心到直線3x+4y+1=0的距離為2.
(1)求圓C的方程;
(2)若橢圓$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{^{2}}$=1的離心率為$\frac{\sqrt{3}}{2}$,且左右焦點為F1,F(xiàn)2,已知點P在圓C上且使∠F1PF2為鈍角,求點P橫坐標的取值范圍.

查看答案和解析>>

同步練習冊答案