11.已知向量$\overrightarrow m=(sinx,-\frac{1}{2})$,$\overrightarrow n=(\sqrt{3}cosx,cos2x)$,函數(shù)$f(x)=\overrightarrow m•\overrightarrow n$
(1)求函數(shù)f(x)的最大值及最小正周期;
(2)將函數(shù)y=f(x)的圖象向左平移$\frac{π}{6}$個(gè)單位,得到函數(shù)y=g(x)的圖象,求g(x)在$[0,\frac{π}{2}]$上的值域.

分析 (1)利用向量的數(shù)量積以及兩角和與差的三角函數(shù)化簡函數(shù)的解析式,然后求解函數(shù)的周期以及最值.
(2)利用函數(shù)的圖象變換求出函數(shù)的解析式,然后求解函數(shù)的值域.

解答 解:(1)$f(x)=\overrightarrow m•\overrightarrow n=\sqrt{3}sinxcosx-\frac{1}{2}cos2x$=$\frac{{\sqrt{3}}}{2}sin2x-\frac{1}{2}cos2x$=$sin(2x-\frac{π}{6})$.
所以f(x)的最大值為1,最小正周期為π.
(2)由(1)得$f(x)=sin(2x-\frac{π}{6})$.將函數(shù)y=f(x)的圖象向左平移$\frac{π}{6}$個(gè)單位后得到$y=sin[2(x+\frac{π}{6})-\frac{π}{6}]=sin(2x+\frac{π}{6})$的圖象.
因此$g(x)=sin(2x+\frac{π}{6})$,又$x∈[{0,\frac{π}{2}}]$,所以$2x+\frac{π}{6}∈[{\frac{π}{6},\frac{7π}{6}}]$,$sin(2x+\frac{π}{6})∈[{-\frac{1}{2},1}]$.
故g(x)在$[{0,\frac{π}{2}}]$上的值域?yàn)閇-$\frac{1}{2}$,1].

點(diǎn)評 本題考查向量與三角函數(shù)相結(jié)合,兩角和與差的三角函數(shù),考查三角函數(shù)的圖象與性質(zhì)以及計(jì)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知銳角△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,若a=1,b2+c2-bc=1,則△ABC面積的取值范圍是(  )
A.$(\frac{{\sqrt{3}}}{6},\frac{{\sqrt{3}}}{4}]$B.$(\frac{{\sqrt{3}}}{6},\frac{{\sqrt{3}}}{4})$C.$(\frac{{\sqrt{3}}}{12},\frac{{\sqrt{3}}}{4})$D.$(\frac{{\sqrt{3}}}{12},\frac{{\sqrt{3}}}{4}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)$f(x)=asinxcosx-{sin^2}x+\frac{1}{2}$的一條對稱軸方程為$x=\frac{π}{6}$,則函數(shù)f(x)的單調(diào)遞增區(qū)間為( 。
A.$[{kπ-\frac{π}{3},kπ+\frac{π}{6}}]$,(k∈Z)B.$[{kπ-\frac{π}{12},kπ+\frac{5π}{12}}]$,(k∈Z)
C.$[{kπ-\frac{7π}{12},kπ-\frac{π}{12}}]$,(k∈Z)D.$[{kπ+\frac{π}{6},kπ+\frac{2π}{3}}]$,(k∈Z)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知變量x,y滿足$\left\{\begin{array}{l}x-y≥-2\\ x+y≥-2\\ x≤0\end{array}\right.$則$\frac{y+2}{x+3}$的最大值為( 。
A.$\frac{4}{3}$B.$\frac{3}{2}$C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.如圖莖葉圖記錄了甲、乙兩組各6名學(xué)生在一次數(shù)學(xué)測試中的成績(單位:分),已知甲組數(shù)據(jù)的眾數(shù)為124,乙組數(shù)據(jù)的平均數(shù)為甲組數(shù)據(jù)的中位數(shù),則x,y的值分別為( 。
A.4,4B.5,4C.4,5D.5,5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知復(fù)數(shù)$\overline{z}$=$\frac{2}{i(3-i)}$,則復(fù)數(shù)z在復(fù)平面內(nèi)的點(diǎn)位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=1+2t}\\{y=-\sqrt{3}+\sqrt{3}t}\end{array}\right.$(t為參數(shù)),以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程是ρsin2θ-3cosθ=0.
(Ⅰ)求曲線C的直角坐標(biāo)方程以及直線l的極坐標(biāo)方程;
(Ⅱ)求直線l與曲線C交點(diǎn)的極坐標(biāo)(ρ≥0,0≤θ<2π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.某商場擬對商品進(jìn)行促銷,現(xiàn)有兩種方案供選擇.每種促銷方案都需分兩個(gè)月實(shí)施,且每種方案中第一個(gè)月與第二個(gè)月的銷售相互獨(dú)立.根據(jù)以往促銷的統(tǒng)計(jì)數(shù)據(jù),若實(shí)施方案1,頂計(jì)第一個(gè)月的銷量是促銷前的1.2倍和1.5倍的概率分別是0.6和0.4.第二個(gè)月銷量是笫一個(gè)月的1.4倍和1.6倍的概率都是0.5;若實(shí)施方案2,預(yù)計(jì)第一個(gè)月的銷量是促銷前的1.4倍和1.5倍的概率分別是0.7和0.3,第二個(gè)月的銷量是第一個(gè)月的1.2倍和1.6倍的概率分別是0.6和0.4.令ξi(i=1,2)表示實(shí)施方案i的第二個(gè)月的銷量是促銷前銷量的倍數(shù).
(Ⅰ)求ξ1,ξ2的分布列:
(Ⅱ)不管實(shí)施哪種方案,ξi與第二個(gè)月的利潤之間的關(guān)系如表,試比較哪種方案第二個(gè)月的利潤更大.
銷量倍數(shù)ξi≤1.71.7<ξi<2.3ξi2.3
利潤(萬元)152025

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若a=log23,b=log3$\frac{1}{2}$,c=3-2,則下列結(jié)論正確的是( 。
A.a<c<bB.c<a<bC.b<c<aD.c<b<a

查看答案和解析>>

同步練習(xí)冊答案