【題目】已知函數(shù),直線.

(Ⅰ)設圖象上一點,為原點,直線的斜率,若 上存在極值,求的取值范圍;

(Ⅱ)是否存在實數(shù),使得直線是曲線的切線?若存在,求出的值;若不存在,說明理由;

(Ⅲ)試確定曲線與直線的交點個數(shù),并說明理由.

【答案】,(Ⅲ)見解析

【解析】

(Ⅰ)先根據(jù)斜率公式列再求導數(shù)及其零點,最后根據(jù)條件列不等式,解得結(jié)果,(Ⅱ)設切點,根據(jù)導數(shù)幾何意義得斜率,再根據(jù)點斜式得切線方程,最后根據(jù)切線過(0,-1)點列方程,解得切點坐標,即得的值;(Ⅲ)先變量分離,轉(zhuǎn)化為研究函數(shù)圖象,利用導數(shù)研究其單調(diào)性,再結(jié)合函數(shù)圖象確定交點個數(shù).

(Ⅰ)∵,∴,解得.

由題意得: ,解得.

(Ⅱ)假設存在實數(shù),使得直線是曲線的切線,令切點,

∴切線的斜率.

∴切線的方程為,

又∵切線過(0,-1)點,

.

解得,∴,

.

(Ⅲ)由題意,令, 得 .

, ∴,由,解得.

在(0,1)上單調(diào)遞增,在上單調(diào)遞減,

,又時,時,,

時,只有一個交點;時,有兩個交點;

時,沒有交點.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,以坐標原點O為極點,x軸正半軸為極軸建立極坐標系,直線l的極坐標方程為ρcosθ+ρsinθ1,曲線C的極坐標方程為ρsin2θ8cosθ

1)求直線l與曲線C的直角坐標方程;

2)設點M0,1),直線l與曲線C交于不同的兩點PQ,求|MP|+|MQ|的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)=

(1)求函數(shù)的單調(diào)遞增區(qū)間;

(2)已知在ABC中,A,BC的對邊分別為a,b,c,,求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知雙曲線C,O為坐標原點,FC的右焦點,過F的直線與C的兩條漸近線的交點分別為M、N.OMN為直角三角形,則|MN|=

A. B. 3 C. D. 4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列說法中,正確的序號是( 。

b2”“1b4成等比數(shù)列的充要條件;

雙曲線與橢圓有共同焦點是真命題;

③若命題p∨¬q為假命題,則q為真命題;

④命題pxR,x2x+10的否定是:xR,使得x2x+1≤0

A.①②B.②③④C.②③D.②④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,四棱錐PABCD中,平面PAD⊥平面ABCD,PAPD,四邊形ABCD為等腰梯形,BCADBCCDAD1,EPA的中點.

1)求證:EB∥平面PCD;

2)求平面PAC與平面PCD所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】微信運動,是由騰訊開發(fā)的一個類似計步數(shù)據(jù)庫的公眾賬號.用戶可以通過關注微信運動公眾號查看自己每天或每月行走的步數(shù),同時也可以和其他用戶進行運動量的或點贊.加入微信運動后,為了讓自己的步數(shù)能領先于朋友,人們運動的積極性明顯增強,下面是某人20181月至201811月期間每月跑步的平均里程(單位:十公里)的數(shù)據(jù),繪制了下面的折線圖.

根據(jù)折線圖,下列結(jié)論正確的是(

A. 月跑步平均里程的中位數(shù)為月份對應的里程數(shù)

B. 月跑步平均里程逐月增加

C. 月跑步平均里程高峰期大致在、

D. 月至月的月跑步平均里程相對于月至月,波動性更小,變化比較平穩(wěn)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),若不等式上恒成立,則實數(shù)的取值范圍是( ).

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線,過定點作不垂直于x軸的直線,交拋物線于A,B兩點.

1)設O為坐標原點,求證:為定值;

2)設線段的垂直分線與x軸交于點,求n的取值范圍;

3)設點A關于x軸的對稱點為D,求證:直線過定點,并求出定點的坐標.

查看答案和解析>>

同步練習冊答案